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Abstract 
 

We are concerned with negotiators who negotiate on 
issues (products or services) characterized in terms of 
multiple criteria. In a typical round of the negotiation, the 
negotiator receives from various counter-parties 
responses or offers with specific values on the  criteria 
that characterize the issue at stake. Clearly, the 
negotiator has certain preferences with respect to these 
offers. The analyis we present here allows us to reveal the 
dependencies among the various offers in light of the 
negotiator’s preferences. In addition, we are able to 
expose the dependencies among the criteria, as they are  
implied by the counter-parties’ offers. We make use of 
basic concepts from preference modeling and relational 
analysis to obtain a family of partial rank orders 
illustrating the dependencies among offers and criteria. 
We believe that, by using this information, the negotiator 
is better armed to identify the most suitable counter-party 
to negotiate with, or the criterion on which to focus in 
this negotiation.  
 
 
1. Introduction 
 

We are interested in developing a quantitative model 
of decision making for multi-lateral negotiation over 
multiple criteria. This class of problems is best seen in the 
Request For Quote (RFQ) protocol that is becoming 
increasingly popular for electronic procurement systems 
[2]. Agents can also implement such a quantitative model 
as decision algorithms to (semi)-autonomously negotiate 
the procurement of goods or services [7].  

 
To focus our minds, assume that a negotiation takes 

place among one seller and multiple buyers. The seller 
has registered a particular product on an electronic 
marketplace, and provided a description in terms of 
multiple criteria that characterize that product, some of 
which are negotiable (for instance price and date of 
availability). She then has received various proposals or 

offers from interested buyers, each of which contains 
values on the indicated negotiable criteria. As every offer 
reflects a buyer’s personal  valuation of the product, it is 
not very likely that all offers will be identical. The 
obvious problem the seller then must solve is: given these 
offers, which buyer should I focus on to negotiate further 
and sell my product [6]?  

 
One common solution is to calculate the total value of 

every potential buyer using a weighted sum multi-criteria 
model, and then rank order these values. The preferred 
buyer then is the buyer with the highest total value. While 
this method is straightforward, at least in principle, it 
severely limits the seller’s understanding of the offers of 
the buyers. Indeed, the entire offer of every buyer is 
reduced to a single number – the total value.  

 
We propose a second solution, taking into account all 

information contained within the buyers’ offers, and 
preserving that information richness throughout the 
analysis. Based on pairwise comparisons of the seller’s 
preferences on the buyers’ offers, we again obtain a rank 
order of the different buyers. However, in contrast to the 
linear ordering offered by the first approach, the rank 
order is now only partial: two buyers can be 
incomparable, due to conflicting preferences on some  
criteria. Incomparability is a key relation in preference 
modeling [4], and adds substantial interpretational value 
to the standard analysis based on strict preferences and 
indifferences only.   

 
We introduce the theoretical framework of our 

analysis, preference modeling and relational analysis, in 
the following section. In Section 3, we provide a detailed 
numerical illustration of our approach to the analysis of a 
seller negotiating with multiple buyers.  We first illustrate 
how to obtain a family of partial rank orders for the 
buyers, and then we turn to the analysis of the criteria that 
characterize the issue at stake. Finally, we summarize our 
approach and point at our future research directions in 
Section 4. 

 



2. Preference modeling  
 

2.1. Crisp and fuzzy preference relations 
 

A relation R from a set X to a set Y is a rule that 
assigns certain objects in the set X to certain other objects 
in the set Y. If both sets X and Y are identical, we say 
that R is a binary relation on X. The expression “x is in 
relation R with y” (or also “x is R- related to y”) is 
denoted as xRy or (x,y)∈ R.  In preference modeling, the 
objects we are looking at are decision alternatives (or in 
short alternatives), and the decision rules express a 
decision maker’s preference (or lack thereof, either an 
indifference or an incomparability) among all possible 
pairs of alternatives. Denoting the set of alternatives as A, 
then the relations expressing such preferences (or 
indifference or incomparabilities) all are binary relations 
in A. More specifically, we define the following three 
important relations on A:  
 
• A couple of alternatives (a,b) belongs to the strict 

preference relation P if and only if the decision 
maker prefers a to b; 

• A couple of alternatives (a,b) belongs to the 
indifference relation I if and only if the decision 
maker is indifferent between alternatives a and b; 

• A couple of alternatives (a,b) belongs to the 
incomparability relation J if and only if the decision 
maker is unable to compare a and b, for instance 
caused by conflicting or insufficient information.  

 
There are lots of properties for which it is difficult to 

obtain a crisp partition of the universe of objects into 
those objects that satisfy the property and those objects 
that do not satisfy the property. In preference modeling, 
for instance, it is usually not obvious to decide which 
decision alternatives are unequivocally preferred to what 
other alternatives. A solution to this crisp dichotomy is to 
introduce a general transition from membership (e.g., 
definitely preferred) to non-membership (e.g., definitely 
not preferred), and allowing for partial degrees of 
membership. Mathematically, this idea is translated into a 
fuzzy set.  
 

Formally, a fuzzy set A on a universe X is a mapping 
from X to the unit interval [0,1], with the value A(x) of A 
in x of X the degree of membership of x in A. A(x)=1 
means full membership, A(x)=0 means non-membership, 
and all values A(x) in ]0,1[ denote partial membership.  
 

In order to analyze a fuzzy set A in X at a particular 
membership degree α ∈  [0,1], we can ‘cut’ the fuzzy set 
at that degree, and consider only the set of  elements x of 
X that have a membership degree A(x) of at least α. The 

crisp set constructed in this way is called the α-cut of the 
fuzzy set A, and denoted as Aα.  
 

Just as a fuzzy set extends a classical or crisp set, a 
fuzzy relation then extends the concept of a crisp relation 
from X to Y. For every (x,y) in X x Y, the quantity R(x,y) 
is interpreted as the strength of the existing R-link 
between x and y. In this way, a fuzzy strict preference (or 
indifference or incomparability) relation expresses the 
strength of a strict preference (or indifference or 
incomparability) among any couple of alternatives [8]. 
 
2.2. Analyzing a fuzzy quasi-order relation 

 
Recall that a binary (fuzzy) relation R in a universe X 

is called a (fuzzy) quasi-order relation in X if and only if 
it is reflexive and transitive. The following 
characterization of a fuzzy quasi-order relation in terms of 
its α-cuts will prove to be important:  R  is a fuzzy quasi-
order relation in X if and only if for all values of α (with 
α belonging to the interval [0,1]) it holds that Rα is a 
(crisp) quasi-order relation in X. Another crucial result is 
that any binary fuzzy relation R has a fuzzy quasi-order 
closure Q, i.e., a least inclusive fuzzy relation Q 
containing R and possessing the reflexivity and 
transitivity properties [1]. These results on fuzzy quasi-
order relations allow us to reveal important information 
contained in the offers of the various buyers.  
 

The starting point of our analysis are the preferences 
of the seller with respect to the various values specified in 
the buyers’ offers for the different criteria of the product 
for sale. We assume that these preferences are given in 
the [0,1] interval, with 0 indicating no preference and 1 
indicating a crisp preference, and conveniently 
summarize these preferences in a fuzzy preference 
relation P.  
 

Next, we compare all rows in P two by two and 
compute how much every row is included in any other 
row. The degree to which one row is included in another 
row reflects how the seller’s preferences on one buyer’s 
values compared to her preferences on another buyer’s 
values. We now summarize these degrees of inclusion in 
a binary fuzzy relation D, a relation in the set of buyers B.  
 

More formally, and denoting the i-th row of P as the 
set Pi, we define the degree of inclusion of the i-th and j-
th row of P as  
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with k=1,…n the number of criteria, and Pik the seller’s 
degree of preference with respect to the value offered by  
buyer i on criterion k.  As D is not necessarily transitive, 



we construct the fuzzy quasi-order closure Q of D in 
order to guarantee transitivity.   
 

Since Q is a fuzzy quasi-order relation, we know that 
every α-cut  of Q is a crisp quasi-order relation. The α-
cuts of Q have the following interpretation: for any two 
buyers bi and bj, αQbb ji ∈),(  if and only if bi’s offer is at 

most as good as bj’s offer, with degree of confidence α. 
 

Each α-cut of Q is a quasi-order relation in the set of 
buyers B. To Qα corresponds an equivalence relation Eα 
in B defined by 
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The equivalence relation partitions the set of buyers into 
classes of buyers that are equally good. The equivalence 
class [bi]α of a buyer bi is given by 
 

}.),({][ αα Ebbbb jiji ∈=  

 
The corresponding quotient set Bα is then given by 

}.]{[ BbbB ∈= αα  The quasi-order relation Qα induces 

an order relation ≤α in the quotient set, in the following 
way: 

.),(][][ αααα Qbbbb jiji ∈⇔≤  

 
Finally, we will make use of Hasse diagrams to 

graphically represent the preferences, indifferences or in-
comparabilities among the buyers defined by the order 
relation ≤α at every level α [3].   
 
3. Numerical illustration 
 
3.1. Analysis of the buyers’ offers 
 

To illustrate the above theoretical analyis, we consider 
the following multi-criteria negotiation. A company’s HR 
manager has posted a job opening on an electronic 
marketplace, and she has described that job in terms of 
three criteria C1 (Hourly Salary), C2 (Duration) and C3 
(Starting date). Moreover, she (or her company) has 
particular preferences on these criteria, for instance ‘10 
US dollar’, ‘2 weeks’, and ‘Next week’, respectively. 
Shortly after posting the job,  five people respond to the 
posted job offer. Every applicant offers particular values 
on the criteria, and these differ more or less significantly 
from the manager’s own values. The magnitude of these 
value differences will determine the preferences the HR 
manager has with respect to these offers.  

Assume that she has the following preferences, 
summarized in the preference relation P:   
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where P(i,j) is the degree to which the HR manager 
prefers her own value on the j-th criterion to the value 
suggested in the counteroffer of the i-th buyer on the j-th 
criterion. For example, the value of 0.1 for P(1,1) 
indicates that she slightly prefers (to a degree 0.1) her 
own value of 10 dollar on ‘Hourly Salary’ to the Salary 
value proposed in the first applicant’s counteroffer.   
 

We should make two important observations here. 
First, it happens that in our particular example all values 
in P are strictly larger than zero. This means that none of 
the applicants has offered a value that is better for the 
seller, for instance working for 9 dollar per hour, or 
starting the next day. Secondly, the smaller a degree of 
preference in P is, the better the corresponding value of 
that offer is to the seller. This implies that the 
interpretation of the α-cuts of Q will be different : for any 
two applicants bi and bj, αQbb ji ∈),(  if and only if bi’s 

offer is at least as good as bj’s offer, with degree of 
confidence α. 
 

The calculation of the inclusion degrees of the various 
rows Pi is straightforward, and leads to the following 
dependency relation D, a binary relation in the set of 
applicants: 
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The transitive closure Q of D then is given by:  
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Note that we have quite a large difference for some 

positions in Q as compared to D – e.g. the most extreme 
change is for Q(3,1): a change from 0.6 to 0.8. Indeed, in  
general, the transitive closure will strenghten the weakest 
links, i.e., increase the degrees of the weakest inclusions. 
 

From Q, it follows that we must consider α-cuts at the 
following levels: {0.8,0.83,0.87,0.9,0.93,0.97,1}, leading 
to the following crisp cut relations: 
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Note that Q0.8 is the identity matrix.  
 

Let us now analyze Q at the given cut-levels. At � = 
0.8, the HR manager is indifferent to all offers. This 
means that, at this level, no significant differences exist 
among the various offers she has received.  At � = 0.83, 
we observe a first separation among the offers. The HR 
manager is still indifferent to Offers  1 and 2, as well as to 
Offers 3, 4 and 5. However, at this level, she prefers 
Offers 1 and 2 to Offers 3, 4 and 5. At � = 0.87, Offer 4 
becomes more preferred than Offers 3 and 5, while 
remaining less preferred than Offers 1 and 2. At � = 0.90, 
the original group of indifferent Offers 3, 4 and 5 
completely dissolves: Offer 4 is preferred to Offer 5 and 
Offer 5 is preferred to Offer 3, while all three remain less 
preferred than Offers 1 and 2. At � = 0.93, Offers 1 and 2 
are now ‘separating’ – Offer 1 is preferred to Offer 2, and 
we obtain a linear ordering of all offers. At � = 0.97,  the 
first incomparabilities show up: Offers 4 and 5 become 
incomparable, and Offer 3 becomes incomparable to both 
Offer 4 and Offer 5. Offer 1 is still the preferred Offer, 
while Offer 2 remains in second place. Finally, at the 

highest cut level � = 1, also Offer 1 and Offer 2 become 
incomparable, as well as Offer 2 and Offer 4, which 
means that Offer 2 separates from 1 and 4. We illustrate 
the various relationships among the offers at the different 
cuts in Figure 1.  
  

  
Figure 1. Hasse diagrams for Qα, with 
α∈ {0.8,0.83,0.87,0.9,0.93,0.97,1}. 

 
 

3.2. Analysis of the seller’s criteria 
 

Interestingly, we can analyze the seller’s criteria with 
the same technique. This analysis will show us on which 
criteria the seller’s values differ most from the values 
offered by the buyers. As such, the seller will be aware of 
which criteria are most discriminating among the various 
buyers, and on which criteria to focus for further 
negotiation. This type of analysis is essential when 
preparing to make trade-offs in the negotiation [5]. 
 

We obtain a ranking of the seller’s criteria by 
considering the transpose Pt of the original matrix P, i.e., 
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Note that the smaller the preferences are on a criterion (a 
row in Pt), the better the buyers’ responses are to the 
seller on that particular criterion. The dependency matrix 
D derived from Pt  is given by: 
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which is a transitive relation, i.e., Q = D in this case. The 
interpretation of the the α-cuts of Q in this case is: for any 
two criteria ci and cj, αQcc ji ∈),(  if and only if ci is at 

least as good as cj, with degree of confidence α. 
 

We now have to consider cuts at the following levels: 
{0.76, 0.88, 0.9, 0.98,1}. At � = 0.76, the lowest cut 
level, all alternatives (the criteria in this case) are 
indifferent.  At � = 0.88,  we have that Criterion 2 
becomes worse than Criteria 1 and 3, both remaining  
indifferent. This means that Criterion 2 is the criterion on 
which worse scores are received from the buyers. At � = 
0.9, we obtain a linear rank order: Criterion 3 is better 
than Criterion 1, which is better than Criterion 2. At � = 
0.98, Criteria 1 and 3 have become incomparable, while 
Criterion 2 remains the worst criterion. Finally, at the 
highest cut level of � = 1,  Criterion 3 is better than 
Criterion 2, but both are incomparable to 1.  
 

From this analysis we can conclude that Criterion 2 
overall is the worst criterion, meaning that the seller has 
the lowest preferences for the offers the buyers have 
made on this criterion. Criterion 3 is always better than 
Criterion 2, while the position of Criterion 1 varies. 

  

 
Figure 2. Hasse diagrams for Qα, with  

α∈ {0.76, 0.88, 0.9, 0.98, 1}. 
 
4. Conclusion 

 
We have presented a model of individual decision 

making that better utilizes the information context of 
decision maker than the classic models. In this model the 
set of alternatives are evaluated through  a combination of 
crisp and fuzzy relational analysis methods. Central to 
this model is the incomparability relation that occurs 
when the decision maker has conflicting information to 
make decisions. Here we have shown how the decision 

maker can, through varying the levels of the alpha cut, 
form different rank orderings of alternatives.  

Our future goal is to append this individual decision 
making model with a conflict resolution / coordination 
protocol (such as negotiation or persuasion mechanism) 
[9]. Therefore, the original individual decision making 
problem is transformed from an interactive into a 
distributed one where individual decision models 
(strategically) negotiate with one another over the set of 
possible alternatives. One possible object of negotiation is 
the level of the alpha cut.  Alternatively, information 
revealed in the course of negotiation can be used to 
determine the value of alpha. Scalable algorithms and 
architectures will be developed that implement this  
model for computational agents that operate 
autonomously as decision makers or semi-autonomously 
as decision support systems. Finally, the developed model 
and its multi-agent extension will be evaluated in bi-
lateral bargaining and multi-lateral RFQ as well as other 
trading protocols. 
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