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ABSTRACT
A classificationof constraintsis proposedthat representsnot

only the individual and negotiateddecisionsof multiple agents
asconstraints,but alsotheexceptionsthat canoccurat execution
time. A designof anexceptionmechanismis thenproposedbased
on task-environmentconstraints.This mechanismis composedof
aninformative anda normative component.Theinformative com-
ponentfunctionsto updatethebeliefsof agentsaboutpossibleex-
ceptionsduringthenegotiationor executionstagesof a joint activ-
ity. Thenormative component,on theotherhand,placesrequire-
mentson theagentto reasonaboutsuchexceptions.The interac-
tion of suchaninformativemechanismonabargainingmechanism
iselaboratedin thispaper. A simpleadditivemodelof futureevents
is assumedto reasonablymodelthis information. Differentagent
bargainingstrategies, characterizedas differentattitudestowards
the original constraintsof the local problemgiven this belief, are
thenevaluatedfor a concessionsolver in analternatingsequential
protocol.

1. INTR ODUCTION

The problem of concernis how autonomouscomputa-
tional agents,in a multi-agentsystem(MAS), can reason
andagreeon contractswhenthereareinsecuritiesinvolved
in both the processesof negotiating and executinga con-
tract.Thetypeof negotiationof interestfor usis bargaining
betweenabuyerandasellerfor aservice[6]. Bargaining,in
contrastto other cooperative coordinationmechanismsin-
volvesresolutionof conflictingpreferencesbetweenselfish
agentswherelittle ornoinformationis sharedandthereis no
objectively correctsolution[24, 28]. This bargainingprob-
lem belongsto theclassof problemswheretheobjectiveof
eachagentis to maximizeits profit subjectto somebud-
getarylimits, asubclassof thegeneralproblemof constraint
satisfaction. To solve this type of problemboth operation
researchandAI haveproposedconstraintsolversfor agiven
domainof the constraint(CSPalgorithmsof AI and Inte-
gerProgrammingtechniquesof OR for discreteconstraints,
or continuousoptimizationtechniquesfor real valuedcon-
straints). In this paperthe local problemof an agentis as-
sumedto bedefinedin thepre-negotiationphasewherede-
cisionvariablesdescribinga serviceandtheir preferredsat-

isfactionconstraintsareenumerated.Thesolutionto this lo-
calproblemis thenviewedasanoptimizationproblemcon-
strainedby a multi-dimensionalsystem,ratherthan just a
singleconstraintof apricebudget.Thenegotiationproblem
is thenviewedasadistributedconstraintoptimizationprob-
lem wherea setof variablesdescribinga serviceareshared
amonga setof agents[27, 1]. However, becausethereare
dependenciesamongvariablevaluesthenthelocaloptimiza-
tion processneedsto simultaneouslysatisfyboth the local
andinteractionconstraintssincethe joint solutionrequires
the inclusionsof other agents’optimizationchoices. The
solutionto this distributedoptimizationproblemis whatwe
call acontract.Theexecutionproblemin turn is viewedasa
commitmentproblemwhenagreedto contract(or solutions)
in thenegotiationphasesmustbehonored.In this paperwe
motivatethe view that commitmentsarealso, like domain
and interactionvariables,constraintsover choicesandac-
tions.

Thecontribution of this work are: i) a taxonomyof con-
strainttypes,thatcanbe instantiatedat thepre-negotiation,
negotiationandexecutionstagesof a joint activity, ii) use
of this taxonomyto modelan integratedcontractingsystem
that betterdescribesthe mechanisms,the (typesandnum-
ber of) constraintsthey handleandthe stagesof the activ-
ity they operate,andiii) a designproposalfor anexception
mechanismfor selfishagentsthat handletask-environment
constraintsandshow theinteractionof thismechanismwith
a bargainingmechanismwhereagentsform their strategies
givenbeliefsderivedfrom suchanexceptionmechanism.

Thestructureof thepaperis asfollows. Section2 briefly
motivatesthe rationalesfor the approach.This is followed
by anin-depthenumerationof threestagesof a joint activity
in section3. Constrainttypesarethenidentifiedandclas-
sified for eachof thesestagesin section4. An illustrative
exampleis thengiven in section5 to demonstrateconcepts
from theproceedingsections.A preliminarymodelof con-
straintreasoning,givenonly oneinformativecomponentof
themechanism,is thenpresentedandevaluatedin thepenul-
timatesection6. Finally, the conclusionsreachedand the
futurework areenumeratedin section7.



2. THE RATION ALE

Most� coordination models only partially solve the
overall problem of how agentsform and execute solu-
tions.1Generally, in socialsystemsthereis oftena chainof
interdependentdecisionsandactions(local and/orsocial)at
everystageof acollaborativeactivity, from preparingto en-
ter negotiation,negotiating,andexecutingthe agreedsolu-
tion/contractwhereactions/outcomesin onestagestrongly
influence/constrainthenext. Theapproachtakenhereviews
different collaborative problem solving task as composed
of a numberof different typesof constraints(suchas do-
main,interactionandcommitmentconstraints)eachhandled
by differentsetof mechanism(decision,coordinationand
executionmechanismsrespectively) occurringat different
stagesof a collaborative activity (pre-negotiation,negotia-
tion andexecutionrespectively). Underthis view different
agentarchitectures,negotiationandcommitmentprotocols
canbeseenasproposalsfor mechanismsthathandlediffer-
ent typesof constraints.However, they oftenoperateinde-
pendentlyat differentstagesof a collaborative task. Yet a
satisfactorysolutionmustaccountfor all, andnot just parts,
of this overall coordinationproblem.In this paperwe want
to motivate the position that constraints,and mechanisms
that model them,can representa unified modelingframe-
work for the generalproblemof multi-agentcoordination
for not only negotiation ([26, 1]), but also execution. Ef-
fortshavebeenmadeto makethenegotiationandtheexecu-
tion phasesdependent.For example,in Sandholm’sLeveled
CommitmentProtocolagentsreasonaboutdecommiting,at
eithernegotiationor executiontime,on theagreedoutcome
at negotiation[20]. Reputationandtrust systemsalsoper-
form this “interconnection”role throughproviding histori-
cal feedbackinformation to earlier stagesin collaborative
problemsolvingthatconstrainchoices.

We acknowledge another class of feedbacksystems,
closelyrelatedto reputationandtrustsystems,whichwecall
exceptionsystemsthatfunctionto providefeedbackstatein-
formationto earlierstagesof collaborativeproblemsolving.
This informationsystemcan thenbe usedstrategically by
agentsto reasonaboutall thestagesof a collaborativeprob-
lem solving. This mechanismsmakesdependent(through
agents’reasoning)nottheexecutionoutcomeonnegotiation
outcome,but ratherthenegotiationoutcomesoninformation
aboutlikelihoodof possiblefuturestatesof theworld based
on previous executions.2 This informationis derived from
theobservedde-commitmentsencounterednot only during
contractexecution,but alsocontractformationstages.We
make a further restrictionthat de-commitmentsaredue to
unintentionalcausesandbroughtaboutthrougha limiting
environmentcalledthe task-environmentconstraintthatoc-
cur in negotiation/execution.Thesestagesof a joint activity
aredescribedbelow.

1Theproblemcanalsobestatedasaplanningproblemwherecontracts
areviewedequivalentto plans[5, 8]

2This is motivatedby realworld contractswhereagentsdonotonpriori
basispropose“unsignable”contractsgiven thatcertainstatesof theworld
is likely to hold.
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3. STAGESOF JOINT ACTIVITIES

Any collaborativeactivitiescanbeusefullyclassifiedinto
the following three stages: i) pre-interaction: a knowl-
edgeproblem, ii) interaction: gamingproblem, iii) post-
interaction:commitmentproblem. Thesestagesarerepre-
sentedfor two agents(agent � and � ) in figure 1. Boxes,
ovalsandlinks representprocessesinvolvedin negotiation,
dataandinformationflow respectively. The local problem
of the agentis definedin the pre-interactionphase(or pre-
negotiationwhen the collaborative activity is negotiation).
Thisstageof thecollaborativeactivity canbeinformally de-
fined asthe stagewherethe agent“gets to know itself and
what it wants”. More precisely, in a serviceorientednego-
tiation thisstageof theprobleminvolvesagents(buyersand
sellers)definingthe feasiblesetfrom a setof decisionvari-
ablesgiventhedomainconstraints.Thefeasiblesetdefines
what is possible(or individually rational)beforethe stage
of what is achievable in interaction(or socially rational)
[2]. Next, becausedecisionsof agentsinteractthenlocally
generatedsolution(s)needto be exchangedbetweenthose
agentswhosechoicesexhibit interdependency constraints.
If the local assignmentsof valuesto the decisionproblem
is inconsistentwith an � agentassignmentrequirementthen
agentsneedto negotiateto solvethisconflictproblem.Once
theproblemof finding a globally consistentassignmenthas
beensolvedmulti-laterally theproblemis thentransformed
to ensuringall agentshonourtheir commitmentsat execu-
tion time.

Sectionsbelow expandon eachof theabovestages.

3.1. THE PRE-NEGOTIATION PROBLEM
Thepre-negotiation,or non-interactive,stageof theprob-

lem of theagentis a knowledgeproblem. At this stagethe
agentattemptsto not only defineits local problem,but may
also attemptto solve it independentlyof interactionswith
otheragents.A local solution is locally consistentassign-
mentof valuesto asetof decisionvariablethatsatisfysome
setof constraints.Let �����
	����������� representanagent.Let����� ��� � � ����������� � � � representthe local � dimensionaldeci-



sion variables,or issues,of agent� . In a serviceoriented
negotiationwerestrictourselvesto theproblemswhereboth
the set and ontology of the decisionvariablesare shared
amongthe agents. That is

� �!�"�$#
, in both setmembers

andontology. Although the assumptionof a sharedontol-
ogy is not necessaryfor the model it is sufficient to sim-
plify the coordinationproblem. The assumptionthat deci-
sion variablesare sharedobjectsin negotiation is, on the
otherhand,essentialfor thetypeof negotiationsweconsider
whichrequireagentsto reasonaboutasharedsetof decision
variables.This preferencebased(bargaining)modelis con-
trastedwith persuasion,argumentation[24, 11, 15], or in-
formationbasedmodelsandprotocolsof coordinationthat
do not requirea shareddecisionvariablesets.Furthermore,
let % �& � �(' � � �������)��' � * � bea setof + dimensionalconstraints
of agent� for eachissue� .

Thelocaldecisionproblemof anagentis thendefinedby
thefunction ,-�/. � � thatpreferentially satisfiesa setof con-
straints % � of a setof issues

�0�
. . �

is interpretedas the
mostpreferredlocal solutionor an assignmentof valuesto
eachissue( 1�� � 	 � �

) that is consistentwith thesetof con-
straintsfor eachvariable% � for agent� . Thisconstraintsat-
isfactionproblemis similar to theconstrainedoptimization
problemof aneconomicagent.Theproblemof aneconomic
agentis definedby the following steps.First stepinvolves
deriving the feasible(FS), or attainable,setfrom the deci-
sion variables. The valuesof the decisionvariablesmust
satisfytheconstraintsplacedthroughtheexistenceof a lim-
ited resource.The derived FS canbe eithercontinuousor
discrete.Note, that only technicalandnon-preferentialin-
formation is requiredto determineFS. The secondstepis
defininga criteriafunction(profit, cost,etc.)whichsuitably
reflectsthepreferencesof theagentby associatingnumbers
to elementsin the feasibleset. Finally, a solution to this
problemis soughtthatoptimizesthecriteria function(find-
ing thebestpoint in theFS) usingsomemathematicaltech-
nique(e.gSimplex [3]). Note that to compute. an agent
is assumedto know two aspectsof theproblem:i) a declar-
ative aspectof how to representits preferencesover mem-
bersof the FS and ii) the proceduraloneof how to solve
its local problem(compute, usingeithersomeexterior or
interior method[13]) givenFS. That is, classicallyit is as-
sumedthatevenbeforeenteringnegotiationsarationalagent
is requiredto know methodsfor generatingthe FS aswell
as being able to compute ,-�2� (the most preferred)within
somemetricof boundedness.This assumptionhasimplica-
tionson theknowledgecomplexity of theagentbecausethe
proof of completenessandthesoundnessof thesolutionto
this problemsis known to be hard,even in the linear case
[19]. Therefore,in theworstcaseanagenthasto solvethree
hardproblems:alocal,socialandanexecutionoptimization
problem.

3.2. THE NEGOTIATION PROBLEM

Onceagentshave “in mind” a consistentassignmentof
valuesto eachof their local decisionvariables,they enter
the next stageof a collaborative activity which is negotia-

tion or themodificationandcheckingof consistency of the
joint setof constraints.The negotiationproblemis a gam-
ing problem,whereconflicting preferences(or interaction
constraints)maketheachievementof mutuallyagreedsetof
valuesfor a variabledifficult to achieve,oftenin thecaseof
little or no informationrevelation[6].

In order to achieve conflict resolutionany coordination
mechanismmustspecifythefollowing components.A pro-
tocol, or rules of interaction,that coordinatethe agentsat
eitherasociallevel (synchronicityof messagesfor example)
and/orsociallevel (protocolsthatforcetheselectionof aso-
lution thatsatisfiessomecriteria) [17]. Giventhis protocol
of interactiontheothercomponentof a coordinationmech-
anismis the agents’strategy set. Dependingon the given
protocolanagent’sstrategy canbespecifiedasthepreferred
choicesof the individual in how to: i) generatesolutionsto
the local/globalproblem(the generatorin figure 1) andii)
how to evaluateproposals,giventheprotocolof interaction
(theevaluatorin figure1).

3.3. THE EXECUTION PROBLEM
Theexecutionproblemis essentiallyacommitmentprob-

lem, wheremutually agreedto contractmust be honored.
However, in the real world this is seldomthe case. In fact
agreementsareoften violated due to uncertainties.In the
realworld thenumberof sourcesof theseuncertaintiescan
bevastandfor thisreasoncontractsaresaidto beincomplete
[2]. However, weclassifyuncertaintiesinto:3 arrival of unanticipatedex-postbettersolutions—here

the agent is motivated to decommit its intention to
honorthesolutionand/or3 occurrenceof unanticipatedfailures—heretheagentis
still boundto theintentionto honorthesolution,but is
incapableto do so,dueto for examplecommunication
and/orresourcefailureetc.

Insecuritiesof the first type are viewed as future events
which will result in agentsdecommiting their solution.
Sandholm’s leveled-commitmentwork belongsto this class
[20]. It allows agentsthe flexibility for future negotiation
asin thecaseof nocommitments(by droppingtheircurrent
commitments),but guaranteesagentssomelevel of security
asin thetotal commitmentcase.Our interestlies in the in-
securitiesrepresentedby the secondclassandhow agents
canbeassistedto anticipate,reasonaboutandrecover from
unforeseensolutionexecutionfailures(or exception)during
the solution formation period (during negotiation). In the
realworld therearetwo possiblestrategiesfor handlingex-
ceptions.Oneis reactivewhereagentsactwhenerrorsoccur
atnegotiationor executionphasesof acollaborativeactivity.
Thealternativeis pro-active,whereagentsreasonwith infor-
mation(at boththenegotiationandexecutionphases)about
thelikelihoodof failuresat thepre-negotiationandnegotia-
tionphases, asopposedto whenthefailuresactuallyhappen.
In section6.2 we proposean exceptionmechanismwhose
normativecomponentis specifiedby enforcingtheagentsto



adoptthelatterexceptionhandlingstrategy withoutspecify-
ing howor what this strategy is. If negotiationis seenasa
constrainedsearchthenthis normativecomponentmodifies
the negotiationmechanismby requiringagentsto perform
searchfor not only reachingagreementsat negotiationtime
but alsofor handlingexceptionsduring the pre-negotiation
and negotiation phases(for negotiation and executionex-
ceptionsrespectively). Agentsarerequiredto reasonover
thetask-environmentconstraints,atboththepre-negotiation
andnegotiationphases,in addition to the alreadyexisting
domainandinteractionconstraintsrespectively. Part of this
deliberationcanbecoordinationpoliciestheagentswill un-
dertakegiventhetypesandprobabilityof constraintsoccur-
ring. In factthis is line with thecommoninterpretationof a
contract—aprotocolfor actionsgivencertainlikelihoodsof
futureeventsholding.

Onceformed,eitherobjectively (centrally)or subjectively
(locally), theagentsmustthenreasonovernotonly over the
domainproblem(the contentof the contract)but also the
interactionconstraintsas well as the exceptionrelatedin-
formation. Reasoningis viewedasa constraintsatisfaction
problem.Sectionbelow detailsthesetof decisionsinvolved
asdifferentsystemof constraints.

4. TYPES AND SOURCESOF CONSTRAINTS

Decisionmakingandexecutionat all threephasesof the
problemsolving arelimited by oneor moredifferenttypes
of constraintsthathave differentoriginsandproperties.We
classifyconstraintsinto: i) domainconstraints—occurring
duringdecisionmaking,ii) uncontrollabletask-environment
constraints—occurringduring decisionenacting,iii) con-
trollable task-environment constraints—occurringduring
decision enacting, iv) interaction constraints—occurring
duringdecisionmakingandv) groupconstraints—occurring
duringbothdecisionmakingandenacting

Eachconstrainttypesareelaboratedon below.

4.1. DOMAIN CONSTRAINTS

Domainconstraintsare local/endogenousrestrictionson
the local decisionmaking, defined at the pre-interaction
stageof a collaborative problemsolving. Theseconstraints
areconstraintsnot overactionsbut ratherdecisions.For ex-
ample,thefirst problemof anaeroplaneengineengineeris
to choosea setof valuesfor a systemof variablesthat de-
scribethe characteristicsof the engine,suchas its weight,
its height.A minimal unaryconstraintis thedomain,or the
reservationvalue,of eachnegotiationissue,representedas4(5 �& 	76 89�:� � & �;8<$= � &?> . Anotherunaryconstraintmaybethe
relative importance,or theweight,of anissuerelative to the
otherissues,denotedas @ �& 	A6 BC��D > , theweightof issue� for
agent� restrictedto valueswithin the interval of BE��D . An-
otherpossibleconstraintare the binary/narydependencies
betweenthedecisionvariables.

Uncontrollable task-environment, controllable task-
environment,interactionandgroupconstraints,on theother
hand,areconstraintsthatareexogenouslydefined.

4.2. TASK-ENVIR ONMENT CONSTRAINTS
Theinformationprovidedby theexceptionmechanismis

basedon a model of what we call task-environmentcon-
straint. Theseconstraintsare the set of environmentcon-
straintsencounteredby an agentduring sometask execu-
tion. Thetaskmaybe theprocessof negotiationitself dur-
ing thenegotiationphase,or elsetheexecutionof theagree-
mentat theexecutionphaseof thecollaborativeactivity. We
distinguishbetweenuncontrollableand controllable task-
environmentconstraintsto make explicit thedifferencebe-
tweenenvironmentalconstraintswherethe locusof control
of theeventsis not theagentandconstraintswherelocusof
controlof theeventsis one,otherorbothof thedyadorsome
otherparty. Thisdistinction,specificallythelatter, is impor-
tantwhenmodelingroles,responsibilitiesandcommitments
in aMAS.

Uncontrollable task-environment constraintsis the set
of environmentalconstraintsthat arepresentwhenever the
agentacts in the world, independentlyof the presence/
absenceof other agents. Uncontrollabletask-environment
constraintsarenaturalrestrictionson actionsandaremani-
festedduringeithertheinteraction(communicationactions)
or the post-interactionphase(executionactions). For ex-
ample,somerandomexternalevents(representedasa ran-
dom shockthat is beyond the control of the agentor any
otheragent,e.g. anearthquake)mayinterferewith andim-
pedewith theactionsinvolvedin theprocessof agreeingon
the planedesign(negotiation)or the makingof the engine
when the artifact engineercomesto actuallymake the en-
gine(execution).Conversely, controllabletask-environment
constraintsis thesetof constraintsthatarepresentwhenever
the agentactsin the world in the presenceof other agents
and,likeuncontrollabletask-environmentconstraintcanoc-
cur at eitherthenegotiationor executionphases.For exam-
ple,communicationlinks mightfail betweenanengineanda
wing engineer, or alternatively theirmessagesmightbemis-
represented,or they maylackasharedontology. In addition
to thesecommunicationconstraintsoccurringat the nego-
tiation phasethe jointly agreedsolution when executedat
thepost-negotiationphasecanbesubjectto furtherenviron-
mentalconstraints.Resourcesnecessaryto maketheengine
maybelatein arriving,or areof thewrongspecifications(or
flow exceptions).Sharedresources(e.g. constructiontools,
cranes,etc.) maybewrongly allocatedto / beingover used
by otheragents(shareexception),etc. The importantpoint
to noteis that theagent(s)themselvesarethe locusof con-
trol of this type of constraintandnot somerandomshock
thatcannot becontrolled.Centralto this observationis the
notion thatpreventionof exceptionsis the responsibilityof
theagentperformingarole andis modeledascommitments
whereagentsarecommittedto ensuringthatexceptiondoes
not occur [21, 10, 23]. Control of suchunwantedevents
is achieved in a distributedway by eitheragentstakingap-
propriateactionsin responseto sucheventsor elseensuring
to honourtheir agreedcommitmentat executionphase.In
eithercase,theexceptionmechanismprovidescontingency
information over classesof likely exceptions. Agentsare



then normatively requiredto reasonaboutavoidance,de-
tectionandresolutionprotocols. In sucha framework, the
normative componentof theexceptionmechanismrequires
agentsto negotiateover the adoptionof task-environment
constraintsaspartof their agreements.

4.3. INTERA CTION CONSTRAINTS
Conversely, interaction constraints are preference or

requirement constraints that are present whenever an
agent interact with other agents. We dissociateinterac-
tion constraintsfrom (uncontrollable/ controllable) task-
environmentalconstraintsto distinguishbetweenconstraints
that are due to (un)controllableexogenousevents(uncon-
trollable / controllabletask-environmentalconstraints)ver-
susconstraintson local choicewhoseorigin is the prefer-
enceof otheragents(interactionconstraints).Indeed,this is
consistentwith the view that negotiation is a socialmech-
anismthat achievesconstraintsatisfaction in a distributed
manner. Additionalmechanisms(suchasreputationor trust
systems)canbe provided that regulatesthe initial conflict
level of the negotiation mechanism.An implicit assump-
tion hereis that interactionconstraintsarealwayspresent,
hencewhy a coordinationmechanismis almostalwaysre-
quiredwhenever thereare interactions(with the exception
of whenconflicts are removed at compile time, e.g social
laws, [22]). The variablesof the mechanismare then the
type of coordination(negotiation, persuasion,argumenta-
tion, social laws) and the level of the conflict (moderated
by othermechanisms).A contributionof this work is to ad-
dresstheneedfor explicit reasoningover task-environment
constraintinformationin a similar way a negotiationmech-
anismattemptsto solve a distribute interactionconstraint
problem. The approachadoptedis to modify a negotiation
mechanismby includingor combiningdecisionmakingover
task-environmentconstraintswith thedecisionmakingover
theinteractionconstraints.

4.4. GROUP CONSTRAINTS
Finally, in a socialsystemthe local actions/decisionsof

anagentcanbeconstrainednotonly by otherindividuals,or
likelihoodof events/outcomesbeingtrue,but alsoby some
collectively negotiated/imposednorm. Suchnormscanbe
usedto normatively specify: i) the acceptablemembersof
the FS (shown in figure 1 as the directededgeconnecting
thegroupconstraintsto the FS), and/orii) theprocessesof
the negotiationandexecution. Governmentrulesandreg-
ulationsandorganizationalstandardsandpracticesareex-
amplesof suchgroupconstraints.Note, that whereasin a
socialsystemthe“adoption”of socialandgroupconstraints
is (more or less)an individual’s choice, the samecannot
generallybesaidfor individual task-environmentor domain
constraintssince an agentcannotnegotiate with “mother
nature”over the termsand the environmentof its local or
problemexecution. The implication of this observation is
that dependingon the environmentof an agentthe solu-
tion setfor problemsthataccountfor bothdomainandtask-
environmentconstraintsarelikely to besmallerin sizethan
solutionsthatignorethelattertypeof constraint.

Overall, socialsystemsexhibit a hierarchyof constraints
from different sources,ranging from the domain to ex-
traneouslyoccurring or imposedconstraintson local be-
haviour/decisions.We will call agentsthat reasonwith ei-
therthedomain,task-environment,interactionor groupcon-
straintsasasocial,responsive,socialandsocietalagentsre-
spectively. Thus,an asocialenginedesignermay have “in
mind” an ideal designthat satisfiesonly the local domain
constraintsof its problem.Conflictsthen,in this context, is
whenthecurrentdecisionvariablesolutionsareinconsistent
with otheragents’currentchoices.On theotherhand,a so-
cial enginedesignermayhave“in mind” anidealdesignthat
satisfiesboth the domainconstraintsand the constraintsof
otheragentsencounteredin previousdesigncycles. In this
context conflictsarisewhenthecurrentdecisionvariableso-
lutions areinconsistentwith otheragents’current, andnot
previous,choices.Onehypothesisis thatsocialagents,com-
paredto asocialagents,areexpectedto spendlesstime co-
ordinatingtheirchoiceswhenthefrequency of changein the
dynamicsof thesystemis low.

5. CONSTRAINTS & REASONING: AN
ILLUSTRA TIVE EXAMPLE

As anillustrativeexampleof theconceptsaboveconsider
two agents and � , negotiating over two issues= and F .
An offer is representedby a pair of =G�;F valuesas �/=H�;FC� .
Assumethat the local problemof agent is definedby the
minimizationof asimplelinearobjectivefunction =JIKF , that
satisfiesaconjunctionof lineararithmeticconstraints.More
precisely(in normalform):

minimize =LI�F
suchthat DKMN.OMQPE�BRMTSU�V SWI!.XMTP (1)

Conversely, assumefor simplicity that the agent � hasthe
samesetof constraintsbut its local problemis to maximize,
ratherthanminimize,theobjectivefunction =-IYF . Thefeasi-
blesetof outcomes,thatsatisfyeachagent’sconstraints,and
theoptimalsolutionsareshown in figure2. Thedashlines
acrossthepolygonof thefeasiblesetrepresentthecontours
of the objective function for different values. The arrows
representthe direction that maximizesthe objective func-
tion.

Assumethe rulesof the interactionsis basedon Rubin-
stein’s alternatingsequentialprotocol [18], whereagent 
offers a locally generateddealat time Z � . At the next time
step Z\[ agent � caneitheracceptor rejectthe offer of  . If� rejectsthenit cancounter-proposeanotherlocally gener-
atedoffer. Assume,giventhisprotocol,that  ’sonly rational
strategy in thepresenceof no otherinformationis to offer a
first deal that maximizesits objective function basedonly
on its domainconstraints (given by equationin 1) at timeZ � D . This is shown as the uniquevalue . �

. Call this
evaluationof a concreteoffer, .^] , at time Z by an agent�
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Figure 2: The FeasibleSetandOptimal Outcomesfor Agent _
(left) andAgent ` (right).

the aspirationlevel ab]� . Furtherassumethat � also offers
a dealthatmaximizesits objective function .c[ basedonly
on its domainconstraints.Agent  now hasa choicebased
on the informationjust received,andreasonsaboutwhatto
offer next. Whereasagent dfe lastoffer ( . �

) satisfiedonly
its domainconstraintsnow  hasto reasonaboutnot only
its localdomainconstraints,but alsothenew constraintthat� d e offer is not acceptableto  given the currentconstraint
setrepresentedby its aspirationlevel ab]� (givenby 1). That
is,  mustincludethis new interactionconstraintinto its de-
liberationsif a deal is to be reached.The choicesof the 
essentiallyamountsto solvingthesameproblemasgivenin
equation1 but with different (interactions)constraintsets.
Figure2 shows two differentstrategies[6]. Onestrategy is
to lowerits aspirationlevel andoffer .cg (aconcessionsince
thevalueof theobjective function is now lower).3 Assume
that it is alsorejectedby � . The otherstrategy of  canbe
to againsolvethesameoptimizationproblembut with adif-
ferentconstraintsetthat doesnot effect the level of theob-
jectivefunction(maintainthesameaspirationlevel). .^h are
two suchsolutionsfrom thesetof all possiblesolutionsthat
lie on thesameoptimizationcontouras .cg (see[6] for de-
tails of thealgorithmfor this typeof reasoning).A solution
to the interactive problemis reachedwhenthe contoursof
eachpartyarein contactwith oneanother. In general,differ-
entaspirationlevelsrepresentdifferentdemandson thesat-
isfactionlevels of objective function (or pointsalongwhat
is calledtheiso-curves[2]).

Deliberationover task-environmentand/or group/social
normsconstraintsis, in asimilarmannerto theabove,equiv-
alentto solvingtheoptimizationproblembut with different
systemof constraints.For example,groupnormsmaynor-
matively specifythatoffersover = cannotexceed

V
( =iM V

).
Alternatively,  d e previous interactionswith � hasresulted
in dealsdistributednearpairsof values� V ��D�� . Alternatively,
thisknowledgecanalsobeprovidedby a trustedthird party
in casesof lackof any previousinteractions.Whereasgroup
normsnormativelydelimit portionsof theFS,anagentis not
restrictedin how it deliberatesover the informationabout
likely exceptionsoccurringat executiontime. Furthermore,
if negotiationis viewed asa searchprocessover the space

3In factat jlkim agentn caneither“hold firm” or concedesince oqp is
thesinglesolutionto theproblem.

of thepossibleoutcomesspecifiedby theFSthenconstrain-
ing partsof this setat thepre-negotiationtime is equivalent
to consistency checking,wherethe delimitedareasarenot
visitedduringnegotiationgiventhe likelihoodof anexcep-
tion. However, this choiceof theFSsizeis a strategy of the
agentsandis contingentontheexceptionprobabilities.How
agentsdefinetheir local constraintis their choice.

In summary, deliberationoverdomain,interaction,norms
andexceptionsis modeledasa systemof constraints.Rea-
soning is then a repeatedoptimizationof a progressively
smallerFS.4 Variedsolutionsetsarespecifiedby specify-
ing differentaspirationlevelsof anobjectivefunctionwhich
in turn representsatisfactionof differentsetof constraints.
Thespecificationof differentlevelsof objective function is
interpretedasnegotiationreasoningandis equivalentto goal
programmingtechniques[12].

Finally, the importanceof the role of an interactionpro-
tocol in the reasoningis highlightedwhen the alternating
sequentialprotocol is comparedwith others. For exam-
ple, interactionconstraintsarenot explicitly partof theop-
timization problemwhen agentsmake dealsusing a one-
shotsimultaneousprotocol.Agentscanreasonaboutothers
choices(theproblemof infinite regress)but incentivemech-
anismssuchasVickrey auctionprotocolsattemptto induce
agentsto revealtheir truereservationstherebyobviating the
needto performsearch.

6. THE INSECURITY PROBLEM

In this sectionwe want to investigatehow the informa-
tivepartof theexceptionmechanismcanbeintegratedin to
the local agentreasoningduring the pre-negotiationphase
of the joint problemsolving. The normative componentof
the mechanismduring the pre and negotiation phasesare
deferredto futurework. Specifically, in this sectionwe as-
sumeasimpleadditivemodelof exceptionsandconcentrate
on developingandtestingdifferentagentstrategies.

6.1. A BARGAINING MODEL
Theexceptionmechanismis describedfor a concretene-

gotiationmechanism.Thedetailsof this negotiationmech-
anismis as follows. Negotiation is restrictedto bi-lateral
interactionsconductedbetweentwo agents and � , over a
setof issues

�
. Agentsexchangea singleoffer at eachtime

stepof negotiation. Offers over all issuesare denotedby. . . minimally hasto satisfythedomainof all issues.We
call this the reservationvalue,where 1r= � & 	s6 89�:� � & �;8<$= � & >
and = � & 	 � t

. Agentsare assumedto offer contractsthat
respecttheir trueconstraintshenceincentivemechanismsis
assumedunnecessary. Discretedomainconstraintstogether
with other non-domainconstraintssuchas time limits are
reportedin [14, 7, 6]. Offers areevaluatedlocally usinga
utility function that captureshow well an offer . satisfies

4Note, the solutionof the original problemmay be basedon exterior
algorithmssuchas the Simplex [3]. However, subsequentoptimization,
althoughalsopossiblybasedonexteriormethod,canbeinterpretedasinte-
rior methods[25] sincethesolutionsoughtis insidetheoriginal constraint
set.



the reservation domainconstraint. A simplifying assump-
tion madeis that utility of satisfactionof a contractis the
linear combinationof the satisfactionof the constraintsof
eachissue.Conflictsarewhenthesatisfactionof oneagent’s
constraintsis negatively correlatedwith the satisfactionof
the otheragent’s constraints.5 Offers aregeneratedlocally
andstrategically via differentsolver/mechanisms.Negotia-
tion deliberationinvolvesgenerationmechanismsthatoper-
ategivenbothaharddomainconstraint(suchasthereserva-
tion value)andinteractionconstraints.Mechanismscanbe
basedonthesuccessivemodificationof theacceptancelevel
thatarerelaxed(asoftconstraint)or alternativelysimultane-
ouslydemandingandrelaxing individual acceptancelevels
of decisionvariablesthat producethe sameoverall accep-
tancelevel for an offer. For exploratory purposeswe as-
sumethe first—a concessiongenerationmechanismwhere
therateof satisfactionof all domainconstraintsoversucces-
siveoffersis constantlyreduced/relaxedatsomerate(see[6]
for choicesof othergenerationmechanisms).This is repre-
sentedaslower utility valuesfor successive offers. Finally,
thenegotiationdeliberationexecutioncycleis assumedto be
regulatedby thenormativerulesof analternatingsequential
protocol(describedabove in section5) wheresingleoffers
are generatedand evaluatedlocally and communicatedto
theotherparty.

6.2. EXCEPTION KNOWLEDGE
The generalapproachis to designan exceptionmecha-

nism,implementedandexecutedbysometrustedthirdparty,
that transformsthe decisionproblemof an agentfrom un-
certaindecisionsinto risky decisionchoices. Uncertainty
and risks are informally definedas the lack of any infor-
mation to condition decisionson andsomedistribution of
information,typically aprobabilitydistribution, for basisof
decisionmakingrespectively. This informative component
of the mechanismprovidesnot only the types(or classes)
of possiblecontractexceptionsthat canoccurat execution
time,but alsotheirassociatedprobabilities.In additionto an
informative componentthe exceptionmechanismincludes
a normative componentthat enforcesa protocolof excep-
tion reasoningbasedon threeadditionalexceptionhandling
stages(exceptionanticipation,avoidance,detectionandres-
olution [10, 4]).

We proposethat deliberationover exceptioncanbe rep-
resentedasmodificationof thedomainconstraints(herethe
reservationvalues)notduringthenegotiation,but ratherdur-
ing thepre-negotiationphase.Theeffectof thisdeliberation
is to selectively modify, conditionedon the probability of
exceptions,the original FS for an issue(derived from the
original setof reservationconstraintsandreferredto as % �& )
beforethe negotiationphase.For example,if the problem
of a buying agentis describedasthemaximizationof profit
subjectto someinitial monetaryconstraints,thengiventhe
knowledgethata failureof a dealis possiblethenanagent
maybewilling to paylessof this initial endowmentfor the
risky event andanothermay be preparedto pay more. In

5This is referredto aszero-sumgamesin thetheoryof games[2].

eithercasethe effect of this knowledgecanbe modeledby
dynamicmodificationof the domainconstraints(the reser-
vationvalues)which in turn affect theshapeandsizeof the
FS.Thepreferenceof whichstrategy to executeis saidto be
theattitudeof theagentgiventheavailableinformation.We
modelthis attitudeby dynamicmodificationof thedomain
reservationconstraintfor eachissue� for anagent� by the
following decisionrule:u vRw/xzy {�|~}�v _�� y {G��}�v _0� y {H�
vRw/xzy {?����y {?�2�

If � y{ is decreasingu�}�vRw/xzy {�� }�v _�� y { �9vRw/xzy { ���Cy { ��|�v _0� y { � If � y{ is increasing

where � � & 	�6 BC��D > in theabove constraintmodificationrule
is definedas:

� � & � 8������;D���� �/8<z=����WIA�H� & � �~��Bz���� �~� IA�H� & � ����~�� � (2)

where �����H� & � and ��� �~� representthe current,minimum
andmaximumbelievedprobabilitiesof failurerespectively.
Normally ��� & � and �H� �~� arerestrictedto values B and D
respectively. The attitudeof agent  towardsthis belief is
modeledby � �& 	 � t �

for all issues� . When � �&^¡ D , � � &
approachesD fastestwhen � tendstowards D . Conversely,
when � �&c¢ D , � � & approachesD fastestwhen � is low and
remainsat anasymptotefor increasingvaluesof � . Finally,
when � �& � D�� � & approachesD linearly with increasingval-
uesfor � . Theresultof thedecisionrule is to shrinktheFS
by an amountproportionalto � � & that itself is regulatedby� �& . Note that the lower the valueof � �& the closerto mod-
ified reservation domainto the original reservation % �& for
mostvaluesof � . Sincea utility function ranksthe FS as
a function of the reservation valuesthen increasingvalues
for � �& meansthe limits of the utility function are defined
overasmallerdomainbecausethedecisionrule reducesthe
FS morewith increasingvaluesfor � �& . Hencethe chances
of otheragents’offers being“within” the domainof issue� is reducedwith increasingvaluesof � �& (becauseFS is
smaller). Therefore,lower valuesfor � �& encodesthe atti-
tudeof agent� who is willing to “spendmoreof its initial
budget” on issue � for a deal,even thoughtherearehigher
risks. This risk attitudefor an issueis likely to be adopted
if it is compensatedfor by higherreturnsfor anotherissue£¥¤� � . That is, agentsdefinethe trade-off limits of their
local optimizationproblemgiven the probability of failure
duringthepre-negotiation.

Four pointsrequirementioning.Firstly, for simplicity �
is assumedto bedefinedby alinearcombinationof theprob-
ability of all exceptionclasses:

� � �¦$§ @ §:¨�§
where@ § and̈

�§
aretheimportanceof theindividualexcep-

tion case© andtheprobabilityof its occurrencerespectively.
Secondly, nothingis saidaboutwho computes� . Onepos-
siblemodelof � canbebasedonobjectiveempiricalobser-
vationsby sometrustedthird party[4]. Alternatively, agents



canform theirown subjectiveestimationsof � . Thirdly, the
costsandbenefits(onbothlocalandsocialbenefits)andthe
incentive mechanismsfor local adoptionof an objectively
formed � is not addressedhere. We want to investigate
a modelof failure deliberationgiven someprobability dis-
tribution. Finally, to handlethe combinatorialproblemof
enumeratingall possibleexceptions,werestrictourselvesto
a finite setof exceptionsthat aredomainindependentand
agentorientednegotiationor executionexceptions[4].

6.3. EXPERIMENTS AND RESULTS

The above model of exceptionattitudewas empirically
evaluatedto determinetheeffectof exceptionknowledgeon
thebargainingbehaviour of agents.The

Resultsof exceptiondeliberationarepresentedin figures
3, 4 and 5 for symmetricinteractionbetweentwo agents
with valuesof � �«ª ��� � D�� B and � � BE� ª respectively
for all issues. The assymetricattitudesis shown in figure
6. Final agreedcontractare representedby the solid cir-
cle for valuesof � incrementedin stepsof BE� V from BC� B toBC� ¬ . The solid line connectingthe two axis representsthe
pareto-optimalline [2]. Paretooptimality is definedin the
following manner. Supposetherearetwo outcomes and® suchthatthey bothbelongto thefeasibleset, ¯� ® 	�°²± .
If ³ �& � ® �
´µ³ �& �/G� , for both  and � , but ® is strictly pre-
ferredfor at leastoneagent,³ �& � ® � ¢ ³ �& �/G� for �¶	!������(� ,
thenthe outcome is not paretooptimal. This is formally
representedasa functionthatgiventhegamedefinedby the
pair °²± and ¸· doesnot select  —i.e., ,-��°²±¯�;¸·�� ¤�  .
Pareto-optimalityis ameasureof thelimits of efficiency that
canbe reachedin negotiation. Efficiency is definedasthe
maximizationof theadditionof individual utilities. There-
gion below the efficient frontier is the set of contracts.
exchangedbetweentheagents.

Thesymmetricresultsarediscussedfirst. The important
pointto noteis thattheactualoutcomesareafunctionof the
solver/generationmechanism,theevaluatorandtheprotocol
of interaction.Therefore,differentexecutiontracesarepos-
sibleif we implementeda differentsolver. For instance,the
concessionsolver/mechanismcannotfind a contractwhen
both  and � have attitudesdefinedby � �& � D and � #& � D
to � � BC� ¬ (figure4). However, anothersolver mayfind a
contract.Theconcessionsolverdependentresultsshow that
thelower thevalueof thepair ��� � ��� # � , thehigherthe like-
lihood of an agreementwith higher joint utilities. In other
words,morecontractsarereachableandthesocialwelfareis
increasedmoreif theproductof the % �& and % #& changesless
with increasing� . Conversely, fewer contractsare reach-
able if the reverseis true. However, the interestingpoint
aboutthe dataset is insteadthe input into the solver, de-
finedby theregionboundedby thepareto-optimalline. The
resultsshow that over-constrainingthe solver changesthe
curvilinearshapeof thepareto-optimalline to astraightline.
The implication of this result is that over constrainingthe
FSresultsin morecompetitive (or distributed)negotiations
as opposedto “win-win” (or integrative) negotiations. In
the latter caseeachof the distributedsolverscan simulta-

neous,andpossiblymutually, satisfytheir local constraints.
However, this is not possiblein the former case[6]. The
argumentis asfollows. Whenthepareto-optimalline is de-
scribedby a straightline thenthe agents’payoffs areper-
fectly negatively correlated.Then,a contractthat increases
theutility of oneagentdecreasestheutility of theother. This
is referredto asdistributive bargaining[16]. Hereall the
possibleoutcomeslie on or below the pareto-optimalline.
Furthermore,assuminglinear conflicting utility functions
for the negotiation participants,the sum of eachoutcome
is D (i.e., it is a zero-sumgame[9]).

On the other hand,when the pareto-optimalline is de-
scribedby a curvilinearline thenthe sumof the individual
utilities for acontractdoesnotnecessarilyaddup to D . That
is, in this non-zero-sumgameit is possibleto find contracts
in whichsomeof theconstraintsonsomeissuesaresatisfied
more (higher utilities) and othersare satisfiedless(lower
utility). Furthermore,this increasemaybenefitoneor both
of thenegotiationparticipantssimultaneously. Now theonly
pointson this line wherethe sumsof the individual values
addto D is at thepoint of connectionwith the = and F axis.
Differentpointsalongthe line thendo not necessarilysum
to D and do not necessarilyhave the sameaddition. This
contrastswith the distributive bargainingcasewherethere
is no scopefor improving onescorewithout decreasingthe
scoreof thenegotiationopponent.Distributivebargainingis
generallya featureof competitative interactionswhenonly
a singleconstraintis beingoptimized(suchasthepriceof a
good). In integrative bargaining,on the otherhand,better
social outcomesare achievable when multiple constraints
arebeingoptimizedsimultaneouslyby all solvers. There-
fore theseresultssuggestthatthestrategy of overconstrain-
ing eachof themulti-dimensionalconstraintsresultsin opti-
mizationproblemof asingleconstraintwhosesatisfactionis
perfectlynegatively correlatedwith theother’soptimization
problem.

Theobservedresultsfor theassymetriccasearepresented
in figure 6 for �/� �!� BC� ª ��� #¶� D ). Assymetriccasesare
interestingsincethe assumptionthat agentshave the same
strategy and thesamebelief is strongwhereagentsareun-
likely to adoptthe samestrategiesin interactions.In these
studieswe keepthe latter assumptionbut relax the former.
Resultsshow thatnegotiationsbetweenmore“cautious”(in-
creasing� ) with a less“cautious”agentresultsin reaching
morecontractsfor higherexceptionprobabilities. For ex-
ample,at � � BC� ¹ the spaceof possiblesolutionsis much
larger whenan agentwith � � D negotiateswith another
with a � � BC� ª (figure6) thanwhenthesameagentnegoti-
atesinteractswith asymmetrictype(figure4). Theseresults
imply thatthepossibilityof contracts,representedby theFS,
is a functionof theinteractive attitudesof theagents.Here,
for example,theresultsshow thatinteractionswith lesscau-
tiousagentsresultsin findingcontractsthattheagentwould
not have committedto if in interactionswith anothertype.
Therefore,assymetriesappearto affectthedynamicsof con-
tracting.

In summary, the resultssuggestthat if high valuesof �
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Figure3: Processof Negotiationwith ¿lÀÂÁ�Ã and ¿�Ä-Á�Ã for all
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Figure4: Processof Negotiationwith ¿lÀÂÁTÅ and ¿�Ä-ÁTÅ for all
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Figure5: Processof Negotiationwith ¿lÀÂÁÇÆ�È Ã and ¿�Ä-ÁÇÆ�È Ã for all
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Figure6: Processof Negotiationwith ¿ À ÁÇÆ�È Ã and ¿ Ä ÁÉÅ for all
w



areto be interpretedasbeing“prudent” (or cautious),then
the outcomesreachedarenot good, if the metric of good-
nessis maximizationof a socialwelfare function. However,
anothermetric of goodnessmaybeneededto align the ob-
servedresultswith thecommonintuition that to beprudent
whentherearerisks is good. This is a subjectof future re-
searchwherea goodnessfunction is soughtthat quantifies
the contributionsof cautiousnessof agentsin signingcon-
tractsgiven the likelihoodof failure. In suchcontext over-
constrainingthesolvermayincreasethesocialwelfarefunc-
tion.

7. CONCLUSIONS AND FUTURE WORK
Wehavepresentedataxonomyof how deliberationatdif-

ferentstagesof a joint problemsolving canbe represented
asadistributedsatisfactionof asystemof constraints.A de-
sign anda rationalefor an exceptionmechanismwasalso
presented. This mechanismis composedof an informa-
tive component,usedto updatethe local beliefsof agents,
andanormativecomponentthatenforcesreasoningoverex-
ceptionduring negotiation. A simplenegotiationproblem,
viewedasthe linearoptimizationof a systemof issuecon-
strains(representedasintegeror realvaluedarithmeticcon-
straints),wasthenusedto evaluatedifferentagentstrategies
differentiallyconditionedon the informative componentof
the exceptionmechanism. It was shown that information
provided by the exceptionmechanismcanbe strategically
usedto prunesubjectively believed unreachablecontracts.
We found that the size of the social welfare possibilities,
measuredasthesumof individual utilities, increasesin in-
teractionswith strategies that did not over constraintheir
local optimizationproblemwith increasingexceptionprob-
abilities.

The main focusof future work is further developingthe
informative and normative componentsof the exception
mechanisms.In particular, more sophisticatedmodelsof
exceptioneventsis requiredto supportmore flexible rea-
soningover contractfailures. Furthermore,the assumption
madethat agentswillingly adoptedthe exceptioninforma-
tion is not strictly true in realsocialsystems.Theproblem
of how thegroupcomesto adopttheobjectively derivedin-
formationalsoneedsto be addressed.Differentbeliefsare
hypothesizedto leadto differentoutcomes.Onepossibleso-
lution to this problemis to appendthe informative compo-
nentof the exceptionmechanismwith anescrow (or insur-
ance)componentthatenforcespenaltieson theagentswhen
contractsfail. This incentivemechanismthenindirectlymo-
tivatestheagentsto adoptbeliefsfrom theobjectively esti-
matedprobabilities.In additionto this the normative com-
ponentof themechanismneedsto befurtherdeveloped.The
normative componentis seenasincludinga numberof ad-
ditional negotiationandexecutionconstraintsin to the set
of negotiationissues.Theseissues,describingtheexception
detection,avoidanceand resolutionmechanisms,are then
usedasadditionalconstraintsfor agentsto negotiateexcep-
tion detection,avoidanceandresolutionprotocolsthatmin-
imizesthelossof theagreedcontracts.

REFERENCES
[1] M. Barbuceanuand W. Lo. A multi-attribute utility theo-

retic negotiation architecturefor electroniccommerce. In
Proceedingsof the Fourth InternationalConferenceon Au-
tonomousAgents, Barcelona, Spain (Agents-2000), pages
239–247,Barcelona,Spain,2000.

[2] K. Binmore.FunandGames:A Text onGameTheory. D.C.
HeathandCompany., Lexington,Massachusetts,1992.

[3] G. Dantzig. Maximizationof a linear function of variables
subjectto linearinequalities.In T. Koopmans,editor, Activity
Analysisof ProductionandAllocation, pages359–373.John
Wiley & Sons,1951.

[4] C. DellarocasandM. Klein. An experimentalevaluationof
domain-independentfault handlingservicesin openmulti-
agentsystems.In Proceedingsof InternationalConference
on Multi-Agent Systems(ICMAS-2000),July 2000,Boston,
MA, 2000.

[5] E. Ephrati and J. S. Rosenschein.Multi-agent planningas
searchfor a consensusthat maximisessocial welfare. In
C. CastelfranchiandE. Werner, editors,Artificial SocialSys-
tems—SelectedPapers fromtheFourthEuropeanWorkshop
on Modelling AutonomousAgents in a Multi-Agent World,
MAAMAW-92 (LNAI Volume830), pages207–226.Springer-
Verlag:Heidelberg, Germany, 1994.

[6] P. Faratin,C. Sierra,and N. R. Jennings.Using similarity
criteriato make negotiationtrade-offs. In Proceedingsof the
International Conferenceon Multiagent Systems(ICMAS-
2000),Boston,MA., pages119–126,2000.

[7] P Faratin,C Sierra,andN.R Jennings.Negotiationdecision
functionsfor autonomousagents.RoboticsandAutonomous
Systems, 24(3–4):159–182,1998.

[8] M. Georgeff. Communicationandinteractionin multi-agent
planning. In Proceedingsof theNationalConferenceon Ar-
tificial Intelligence, pages125–129,Washington,D.C.,1983.

[9] R. Gibbons. A Primer in GameTheory. HarvesterWheat-
sheaf,New York, 1992.

[10] M. Klein. A Knowledge-BasedApproach to Handling
Exceptionsin Workflow Systems. Journal of Computer-
SupportedCollaborative Work. Special Issueon Adaptive
WorkflowSystems., 9(3/4),2000.

[11] S. Kraus,N. Nirkhe, andK. Sycara. Reachingagreements
throughargumentation:a logicalmodelandimplementation.
Artificial IntelligenceJournal, 104(1–2):1–69,1998.

[12] S.M. Lee. Goal Programmingfor DecisionAnalysis. Auer-
bachPublishers,Philadelphia,1972.

[13] K. Marritt andP.J.Stuckey. Programmingwith Constraints:
An Introduction. MIT Press,Cambridge,Massachusetts,
1998.

[14] N. Matos,C. Sierra,andN. R. Jennings.Determiningsuc-
cessfulnegotiationstrategies: an evolutionaryapproach.In
Proceedingsof theThird InternationalConferenceon Multi-
Agent Systems(ICMAS-98),Paris, France, pages182–189,
1998.

[15] S.Parsons,C. Sierra,andN. R. Jennings.Agentsthatreason
andnegotiateby arguing. Journalof Logic andComputation,
8(3):261–292,1998.

[16] H. Raiffa. TheArt andScienceof Negotiation. HarvardUni-
versityPress,Cambridge,USA, 1982.

[17] J. S. RosenscheinandG. Zlotkin. Rulesof Encounter. The
MIT Press,Cambridge,USA, 1994.



[18] A. Rubinstein. Toward a focal point theory of bargaining.
In A.E. Roth,editor, Game-Theoretic Modelsof Bargaining,
pages99–114.CambridgeUniversityPress,NY, 1985.

[19] S. Russelland E. Wefald. Do the Right Thing. The MIT
Press,1991.

[20] T.W. Sandholm. Distributed rational decisionmaking. In
G. Weiss,editor, Multiagent Systems, pages201–259.The
MIT Press,Cambridge,Massachusetts,1999.

[21] S. Sen. The role of commitmentin cooperative negotiation.
InternationalJournalon IntelligentCooperativeInformation
Systems, 3(1):67–81,1994.

[22] Y. ShohamandM. Tenneholtz. On the synthesisof useful
sociallaws for artificial agentsocieties(preliminaryreport).
In Proceedingsof theTenthNationalConferenceonArtificial
Intelligence, pages276–281,SanJose,1992.

[23] M. P. Singh. An Ontologyfor Commitmentsin Multiagent
Systems:TowardaUnificationof NormativeConcepts.Arti-
ficial IntelligenceandLaw, 7:97–113,1999.

[24] D. N. WaltonandE. C. Krabbe. Commitmentsin Dialogue:
basicConceptsof InterpersonalReasoning. StateUniversity
of New York Press,New York., 1995.

[25] S. Wright. Primal-Dual Interior-Point Methods. SIAM
Press,1996.

[26] M. Yokoo,E.H.Durfee,T. Ishida,andK. Kuwabara.Thedis-
tributed constraintsatisfaction problem: Formalizationand
algorithms.IEEE Transactionson Knowledge andData En-
gineering, 10(5):673–685,1998.

[27] M. Yokoo andT. Ishida. Searchalgorithmsfor agents. In
G. Weiss,editor, Multiagent Systems, pages165–201.The
MIT Press,Cambridge,Massachusetts,1999.

[28] O. R. Young. Bargaining: Formal Theoriesof Negotiation.
Universityof Illinois Press,Urbana,1975.


