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Abstract

Collaborative design is challenging because strong
interdependencies between design issues make it
difficult to converge on a single design that satisfies
these dependencies and is acceptable to all participants.
Complex systems research has much to offer to the
understanding of these dynamics. This paper describes
some insights from the complex systems perspective.

1. The Challenge: Collaborative Design
Dynamics

Collaborative design is challenging because strong
interdependencies between design issues make it
difficult to converge on a single design that satisfies
these dependencies  and is acceptable to all participants.
The dynamics of collaborative design are thus typically
characterized by (1) multiple iterations and/or heavy
reliance on multi-functional design reviews, both of
which expensive and time-consuming, (2) poor
incorporation of some important design concerns,
typically later life-cycle issues such as environmental
impact, as well as (3) reduced creativity due to the
tendency to incrementally modify known successful
designs rather than explore radically different and
potentially superior ones.

Complex systems research is devoted to
understanding, at a fundamental level, the dynamics of
systems made up of interdependent components, and has
we argue much to offer to our understanding of the
dynamics of collaborative design. Previous research on
design dynamics has focused on routine design [1]
where the design space is well-understood (e.g. as in
brake or transmission design), and the goal is to
optimize a design via incremental changes for
requirements similar to those that have been
encountered many times before [2] [3]. Rapid
technological and other changes have made it

increasingly clear, however, that many of the most
important collaborative design problems (e.g.
concerning software, biotechnology, or electronic
commerce) involve innovative design, radically new
requirements, and unfamiliar design spaces. In this
paper we explore some of what complex systems
research can contribute to this important challenge. We
will begin by defining  a simple model of collaborative
design, review the strengths and weaknesses of current
collaborative design approaches, discuss some of the
insights a complex systems perspective has to offer, and
suggest ways to better support innovative collaborative
design building on these insights.

2. Defining Collaborative Design

A design (of physical artifacts such as cars and
planes as well as behavioral ones such as plans,
schedules, production processes or software) can be
represented as a set of issues (sometimes also known as
parameters)  each with a unique value. A complete
design for an artifact includes issues that capture the
requirements for the artifact, the specification of the
artifact itself (e.g. the geometry and materials), the
process for creating the artifact (e.g. the manufacturing
process) and so on through the artifacts’ entire life
cycle. If we imagine that the possible values for every
issue are each laid along their own orthogonal axis, then
the resulting multi-dimensional space can be called the
design space, wherein every point represents a distinct
(though not necessarily good or even physically
possible) design. The choices for each design issue are
typically highly interdependent. Typical sources of
inter-dependency include shared resource (e.g. weight,
cost) limits, geometric fit, spatial separation
requirements, I/O interface conventions, timing
constraints etc.
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Figure 1: A Model for Collaborative Design

Collaborative design is performed by multiple
participants (representing individuals, teams or even
entire organizations), each potentially capable of
proposing values for design issues and/or evaluating
these choices from their own particular perspective (e.g.
manufacturability). Figure 1 below illustrates this
model: the small black circles represent design issues,
the links between the issues represent design issue inter-
dependencies, and the large ovals represent the design
subspace (i.e. subset of design issues) associated with
each design participant:

In a large artifact like a commercial jet there may be
millions of components and design issues, hundreds to
thousands of participants, working on hundreds of
distinct design subspaces, all collaborating to produce a
complete design.

Some designs are better than others. We can in
principle assign a utility value to each design and
thereby define a utility function that represents the utility
for every point in the design space (though in practice
we may only be able to assess comparative as opposed
to absolute utility values). A simple utility function
might look like the following:
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Figure 2. A simple utility function.

The goal of the design process can thus be viewed as
trying find the design with the optimal (maximal) utility
value, though often optimality is abandoned in favor of
‘good enough’.

The key challenge raised by the collaborative design
of complex artifacts is that the design spaces are
typically huge, and concurrent search by the many

participants through the different design subspaces can
be expensive and time-consuming because design issue
interdependencies lead to conflicts (when the design
solutions for different subspaces are not consistent with
each other). Such conflicts severely impact design utility
and lead to the need for expensive and time-consuming
design rework.

3. Strengths and Limitations of Current
Approaches

Traditionally, collaborative design has been carried
out using a serialized process, wherein for example a
complete requirement set would be generated, then
given to design engineers who would completely specify
the product geometry, which in turn would then be
given to the manufacturing engineers to create a
manufacturing plan, and so on. This has the problem
that if an earlier decision turns out to be sub-optimal
from the perspective of someone making dependent
decisions later on in the design process (e.g. if a
requirement is impossible to achieve, or a particular
design geometry is very expensive to manufacture): the
process of revising the design is slow and expensive,
and often only the highest priority changes are made.
The result is designs that tend to be poor from the
standpoint of later life-cycle perspectives, including for
example environmental concerns such as recyclability
that are becoming increasingly important.

More recently, several strategies have emerged for
better accounting for the interdependencies among
collaborative design participants. These include
concurrent engineering and least-commitment design:

Concurrent engineering involves the creation of
design teams with representatives of all important
design perspectives, for each distinct design subspace.
Design decisions can be reviewed by all affected design
perspectives when they are initially being considered, so
bad decisions can be caught and revised relatively
quickly and cheaply. While this approach has proven
superior in some ways to traditional serial design, it
often incurs an overwhelming burden on engineers as
they attend many hours of design meetings and review
hundreds of proposed changes per week [4].

Least-commitment design is a complimentary
approach that attempts to address the same challenges
by allowing engineers to specify a design incompletely,
for example as a rough sketch or set of alternatives, and
then gradually make the design more specific, for
example by pruning some alternatives [5] [6]. This has
the advantage that bad design decisions can be
eliminated before a lot of effort has been invested in
making them fully specific, and engineers are not forced
to make arbitrary commitments that lead to needless
conflicts.
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While the adoption of approaches has been helpful,
major challenges remain. Consider for example the
Boeing 767-F redesign program [4]. Some conflicts
were not detected until long (days to months) after they
had occurred, resulting in wasted design time, design
rework, and often even scrapped tools and parts. It was
estimated that roughly half of the labor budget was
consumed dealing with changes and rework, and that
roughly 25-30% of design decisions had to be changed.
Since maintaining scheduled commitments was a
priority, design rework often had to be done on a short
flow-time basis that typically cost much more (estimates
ranged as high as 50 times more) and sometimes
resulted in reduced product quality. Conflict cascades
that required as many as 15 iterations to finally produce
a consistent design were not uncommon for some kinds
of design changes. All this in the context of Boeing’s
industry-leading concurrent engineering practices. The
dynamics of current collaborative design processes are
thus daunting, and have led to reduced design creativity,
a tendency to incrementally modify known successful
designs rather than explore radically different and
potentially superior ones.

Improving the efficiency, quality and creativity of
the collaborative innovative design process requires, we
believe, a much better understanding of the dynamics of
such processes and how they can be managed. In the
next section we will review of the some key insights that
can be derived from complex systems research for this
purpose.

4. Insights from Complex Systems Research

A central  focus of complex systems research is the
dynamics of distributed networks, i.e. networks in which
there is no centralized controller, so global behavior
emerges solely as a result of concurrent local actions.
Such networks are typically modeled as multiple nodes,
each node representing a state variable with a given
value. Each node in a network tries to select the value
that optimizes its own utility while maximizing its
consistency with the influences from the other nodes.
The global utility of the network state is simply the sum
of local utilities plus the degree to which all the
influences are satisfied. The dynamics of such networks
emerge as follows: since all nodes update their local
state concurrently based on their current context (at time
T), the choices they make may no longer be the best
ones in the new context of node states (at time T+1),
leading to the need for further changes.

Is this a useful model for understanding the
dynamics of collaborative design? We believe that it is.
It is straightforward to map the model of collaborative
design presented above onto a network. We can map
design participants onto nodes, where each participant is
trying to maximize the utility of the choices it makes for

the design subspace (e.g. subsystem) it is responsible
for, while ensuring its decisions will satisfy the relevant
dependencies (represented as the links between nodes).
As we shall see, to understand network dynamics, the
links between nodes need capture only quite abstract
properties of the dependencies. As a first approximation,
it is reasonable to model the utility of a design as the
local utility achieved by each participant plus a measure
of how well all the decisions fit together. Even though
real-world collaborative design clearly has top-down
elements, the sheer complexity of many design artifacts
means that no one person is capable of keeping the
whole design in his/her head and centralized control of
the design decisions becomes impractical, so the design
process is dominated by concurrent local activities. The
remainder of this paper will be based on this view of the
collaborative design process.

How do such distributed networks behave? Let us
consider the following simple example, a network
consisting of binary-valued nodes where each node is
influenced to have the same value as the nodes it is
linked to (Figure 3):

Node A

Node C

value = 1

value = 1

value = 0

value = 0

value = 0

Node FNode B

value = 1

Node D

Node E

Figure 3: A simple network.

 We can imagine using this network to model a real-
world situation wherein six subsystems are being
designed and we want them to use matching interfaces.
The network has converged, using the concurrent update
procedure described above,  onto a local optimum (no
node can increase the number of influences it satisfies
by a local change), so it will not reach as a result a
global optimum (where all the nodes have the same
value). Generally speaking, networks may not always
converge upon the global optimum, and in some cases
(as we shall see with dynamic attractors), a network
may not converge at all.   Insights into whether and how
global optima can be found in networks represent the
heart of what complex systems research offers to the
understanding of collaborative design.

We will discuss these insights in the remainder of
this section. The key factor determining network
dynamics is the nature of the influences between nodes.
We will first consider how such influences can be
defined. We will then consider two important
distinctions: whether the influences are linear or not,
and whether they are symmetric or not. We will finally
discuss subdivided network topologies, and the role of
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learning. Unless indicated otherwise, the material on
complex systems presented below is drawn from [8].

4.1. How Are Influences Defined?

It is, in principle, straightforward to compute what
the inter-node influences should be in order to create a
network that implements a given global utility function.
In design practice, however, we almost invariably do not
know the global utility function up front; it is revealed
incrementally, rather, by the process of defining and
evaluating different candidate designs. Utility
evaluations are apt in any case to be approximate at best,
because among other things of uncertainties about the
context the artifact will exist in. Imagine for example
that our goal is to design the most profitable airplane
possible: so many imponderable factors heavily
influence this (e.g. oil prices, wars, government
subsidies for competitors) that the only way to really
know the utility of a design is to build it and see what
happens! It is usually much easier, as a result, to define
the influences directly based on our knowledge of
design decision dependencies. We know for example
that parts need to have non-overlapping physical
geometries, that electrical interfaces for connected
systems must be compatible, that weight limits must be
met, and so on.

Care must be taken in defining these influences,
however. We face the risk of neglecting to give
sufficient prominence to important concerns.
Traditionally, influences from later stages of the life
cycle (e.g. the manufacturing or recycling of the
product) tend to be the ones most neglected, and the
consequences are only encountered when that life cycle
stage has been reached and it is typically much more
difficult, time-consuming and expensive to do anything
about it. Another concern is that, while there is always a
direct mapping from a utility function to a set of
influences, the opposite is not  true. Asymmetric
influences, in particular, do not have a corresponding
utility function, and the network they define does not
converge to any final result. This will be discussed
below further in the section on asymmetric networks.

4.2. Linear vs. Non-Linear Networks

If the value of nodes is a linear function of the
influences from the nodes linked to it, then the system is
linear, otherwise it is non-linear. Linear networks have a
single attractor, i.e. a single configuration of node states
that the network converges towards no matter what the
starting point, corresponding to the global optimum.
Their utility function thus looks like that shown in
Figure 2 above. This means we can use a ‘hill-climbing’
approach (where each node always moves directly

towards increased local utility) because local utility
increases always move the network towards the global
optimum.

Non-linear networks, by contrast, are characterized
by having multiple attractors  and ultrametric  (bumpy)
utility functions, like that shown in Figure 4:
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Figure 4. An ultrametric utility function.

Ultrametric utility functions have a fractal  structure
(i.e. self-similar at different scales) so they are bumpy at
all scales, the highest peaks also tend to be the widest
ones, and high peaks tend to be widely separated from
each other. The total number of peaks is an exponential
function of the number of nodes in the network.

A key property of non-linear networks is that search
for the global optima can not be performed successfully
by pure hill-climbing algorithms, because they can get
stuck in local optima that are globally sub-optimal.
Consider, for example, what would happen if the system
started searching in region A in Figure 4 above. Hill-
climbing (if it started from the left of region A) would
take it to the top of the local optimum, which is
substantially lower than optima in other regions of the
utility function. Hill-climbing would do even more
poorly if it started at the right of region A.

One consequence of this reality is a tendency to stick
near well-known designs. When a utility function has
widely separated optima, once a satisfactory optimum is
found the temptation is to stick to it. This design
conservatism is exacerbated by the fact that it is often
difficult to compare the utilities for radically different
designs. We can expect this effect to be especially
prevalent in industries, such as commercial airlines and
power plants, which are capital-intensive and risk-
averse, since in such contexts the cost of exploring new
designs, and the risk of getting it wrong, can be
prohibitive.

A range of techniques have emerged that are
appropriate for finding optima in ultrametric utility
functions, all relying on the ability to search past valleys
in the utility function. Stochastic approaches such as
simulated annealing have proven quite effective.
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Simulated annealing endows the search procedure with a
tolerance for moving in the direction of lower utility that
varies as a function of a virtual ‘temperature’. At first
the temperature is high, so the system is as apt to move
towards lower utilities as higher ones. This allows it to
range widely over the utility function and possibly find
new higher peaks. Since higher peaks are also wider
ones, the system will tend to spend most of its time in
the region of high peaks. Over time the temperature
decreases, so the algorithm increasingly tends towards
pure hill-climbing. While this technique is not provably
optimal, it has been shown to get close to optimal results
in most cases.

Annealing, however, runs into a dilemma when
applied to systems with multiple actors. Let us assume
that at least some actors are self-interested ‘hill-
climbers’, concerned only with directly maximizing
their local utilities, while others are ‘annealers’, willing
to accept, at least temporarily, lower local utilities in
order to increase the utility in other nodes. Simulation
reveals that while the presence of annealers always
increases global utility, annealers always fare
individually worse than hill-climbers when both are
present [9]. The result is that globally beneficial
behavior is not individually incented.

How do these insights apply to collaborative design?
Linear networks represent a special case and we would
expect because of this that most collaborative design
contexts are non-linear. There is a particular class of
collaborative design, however, that has been
successfully modeled as linear networks: routine design
[1]. Routine design involves highly familiar
requirements and design options, as for example in
automobile brake or transmission design. Designers can
usually start the design process near enough to the final
optimum, as a result, to be able to model the design
space as having a single attractor. Linear network
models of collaborative design have generated many
useful results, including approaches for identifying
design process bottlenecks [2] and for fine-tuning the
lead times for design subtasks [3] in routine design
domains.

As we argued above, however, today’s most
challenging and important collaborative design
problems are not instances of routine design. The
requirements and design options for such innovative
design challenges are typically relatively unfamiliar, and
it is unclear as a result where to start to achieve a given
set of requirements. There may be multiple very
different good solutions, and the best solution may be
radically different than any that have been tried before.
For such cases non-linear networks seem to represent a
more accurate model of the collaborative design
process.

This has important consequences. Simply instructing
each design participant to optimize its own design

subspace as much as possible (i.e. ‘hill-climbing’) can
lead to the design process getting stuck in local optima
that may be significantly worse than radically different
alternatives. Design participants must be willing to
explore alternatives that,  at least initially, may appear
much worse from their individual perspective than
alternatives currently on the table. Designers often show
greater loyalty to producing a good design for the
subsystem they are responsible for, than to conceding to
make someone else’s job easier, so we need to find
solutions for the dilemma identified above concerning
the lack of individual incentives for such globally
helpful behavior. We will discuss possible solutions in
the section below on “How We Can Help”.

4.3. Symmetric vs. Asymmetric Networks

Symmetric networks are ones in which influences
between nodes are mutual (i.e. if node A influences
node B by amount X then the reverse is also true), while
asymmetric networks do not have this property.
Asymmetric networks (with an exception to be
discussed below) add the complication of dynamic
attractors, which means that the network does not
converge on a single configuration of node states but
rather cycles indefinitely around a relatively small set of
configurations. Let us consider the simplest possible
asymmetric network: the ‘odd loop’ (Figure 5):

+1

-1

A B

Figure 5. The simplest possible asymmetric network –
an ‘odd loop’.

This network has two links: one which influences the
nodes to have the same value, the other which
influences them to have opposite values. Imagine we
start with node A having the value 1. This will influence
node B to have the value –1, which will in turn
influence node A towards the value –1, which will in
turn cause node B to flip values again, and so on ad
infinitum. If we plot the state space that results we get
the following simple dynamic attractor (Figure 6):
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Figure 6. The dynamic attractor for the odd loop.

More complicated asymmetric networks will
produce dynamic attractors with more complicated
shapes, but the upshot is the same: the only way to get a
definite solution (i.e. configuration of node states) with
a dynamic attractor is to arbitrarily pick one point along
its length. There is one important special case, however:
feed-forward networks. The influences in feed-forward
networks are acyclic, which means that a node never is
able to directly or indirectly influence its own value
(there are in other words no loops). Feed-forward
networks do not have dynamic attractors.

How does this apply in collaborative design settings?
Traditional serialized collaborative design is an example
of an asymmetric feed-forward network, since the
influences all flow uni-directionally from the earlier
product life cycle stages (e.g. design) to later ones (e.g.
manufacturing) with only weak feedback loops if at all.
In such settings we may not expect particularly optimal
designs but the attractors should be static and
convergence should always occur, given sufficient time.
‘Pure’ concurrent engineering, where all design
disciplines are represented on multi-functional design
teams, encourage roughly symmetric influences between
the participants and thus can also be expected to have
convergent dynamics with static attractors. Current
collaborative design practice, however, is a hybrid of
these two approaches, and thus is likely to have the
combination of asymmetric influences and influence
loops that produces dynamic attractors and therefore
non-convergent dynamics. Dynamic attractors were
found to not to have a significant effect on the dynamics
of at least some routine (linear) collaborative design
contexts [3], but may prove more significant in
innovative (non-linear) collaborative design. It may help
to explain, for example, why it sometimes takes so many
iterations to account for all the consequences of changes
in complex designs [4].

4.4. Subdivided Networks

Another important property of networks is whether
or not they are sub-divided, i.e. whether they consist of
sparsely interconnected ‘clumps’ of highly
interconnected nodes, as for example in Figure 7:

Figure 7. An example of a subdivided network.

When a network is subdivided, node state changes
can occur within a given clump with only minor effects
on the other clumps. This has the effect of allowing the
network to explore more states more rapidly. Rather
than having to wait for an entire large network to
converge, we can rely instead on the much quicker
convergence of a number of smaller networks, each one
exploring possibilities that can be placed in differing
combinations with the possibilities explored by the other
sub-networks.

This effect is in fact widely exploited in design
communities, where it is often known as
modularization. This involves intentionally creating
subdivided networks by dividing the design into
subsystems with pre-defined standardized interfaces, so
subsystem changes can be made with few or any
consequences for the design of the other subsystems.
The key to using this approach successfully is defining
the design decomposition such that the impact of the
subsystem interdependencies on the global utility is
relatively low, because the standardized interfaces rarely
represent an optimal way of satisfying these
dependencies. In most commercial airplanes, for
example, the engine and wing subsystems are designed
separately, taking advantage of standardized engine
mounts to allow the airplanes to use a range of different
engines. This is not the optimal way of relating engines
and wings, but it is good enough and simplifies the
design process considerably. If the engine-wing
interdependencies were crucial, for example if standard
engine mounts had a drastically negative effect on the
airplane’s aerodynamics, then the design of these two
subsystems would have to be coupled much more
closely in order to produce a satisfactory design.

4.5. Imprinting

One common technique used to speed network
convergence is imprinting , wherein the network
influences are modified when a successful solution is
found in order to facilitate quickly finding (similar)
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good solutions next time. A common imprinting
technique is reinforcement learning, wherein the links
representing influences that are satisfied in a successful
final configuration of the network are strengthened, and
those representing violated influences weakened. The
effect of this is to create fewer but higher optima in the
utility function, thereby increasing the likelihood of
hitting such optima next time.

Imprinting is a crucial part of collaborative design.
The configuration of influences between design
participants represents a kind of ‘social’ knowledge that
is generally maintained in an implicit and distributed
way within design organizations, in the form of
individual designer’s heuristics about who should talk to
whom when about what. When this knowledge is lost,
for example due to high personnel turnover in an
engineering organization, the ability of that organization
to do complex design projects is compromised. It should
be noted, however, that imprinting reinforces the
tendency we have already noted for organizations in
non-linear design regimes to stick to tried-and-true
designs, by virtue of making the previously-found
optima more prominent in the design utility function.

5. How We Can Help?

What can we do to improve our ability to do
innovative collaborative design? We will briefly
consider several possibilities suggested by the
discussion above.

Information systems are increasingly becoming the
medium by which design participants interact, and this
fact can be exploited to help monitor the influence
relationships between them. One could track the volume
of design-related exchanges or (a more direct measure
of actual influence) the frequency with which design
changes proposed by one participant are accepted as is
by other participants. This can be helpful in many ways.
Highly asymmetric influences could represent an early
warning sign of non-convergent dynamics. Detecting a
low degree of influence by an important design concern,
especially one such as environmental impact that has
traditionally been less valued, can help avoid utility
problems down the road. A record of the influence
relationships in a successful design project can be used
to help design future projects. Influence statistics can
also be used to help avoid repetitions of a failed project.
If a late high-impact problem occurred in a subsystem
that had a low influence in the design process, this
would suggest that the influence relationships should be
modified in the future. Note that this has the effect of
making a critical class of normally implicit and
distributed knowledge more explicit, and therefore more
amenable to being preserved over time (e.g. despite
changes in personnel) and transferred between projects
and even organizations.

Information systems can also potentially be used to
help assess the degree to which the design participants
are engaged in routine vs innovative design strategies.
We could use such systems to estimate for example the
number and variance of design alternatives being
considered by a given design participant. This is
important because, as we have seen, a premature
commitment to a routine design strategy that optimizes a
given design alternative can cause the design process to
miss other alternatives with higher global optima.
Tracking the degree of innovative exploration can be
used to fine-tune the use of innovation-enhancing
interventions such as incentives, competing design
teams, introducing new design participants, and so on.

6. Conclusions

Existing collaborative design approaches have
yielded solid but incremental design improvements,
which has been acceptable because of the relatively
slow pace of change in requirements and technologies.
Consider for example the last 30 years of development
in Boeing’s commercial aircraft. While many important
advances have certainly been made in such areas as
engines, materials and avionics, the basic design concept
has changed relatively little (Figure 8):

Figure 8. The Boeing 737 (inaugurated 1965) and the
Boeing 777 (1995)

Future radically innovative design challenges, such
as cost-effective supersonic commercial transport, will
probably require, however,  substantial changes in
design processes:

Figure 9. A concept for the Boeing supersonic
commercial transport.
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This paper has begun to identify what a complex
systems perspective can offer in this regard. The key
insight is that the dynamics of collaborative design can
be understood as reflecting the fundamental properties
of a very simple abstraction of that process: distributed
dependency networks. This is powerful because this
means that our growing understanding of such networks
can be applied to help us better understand and
eventually better manage collaborative design regardless
of the domain (e.g. physical vs behavioral artifacts) and
type of participants (e.g. human vs software-based).

This insight leads to several others. Most prominent
is the suggestion that we need to embrace a change in
thinking about how to manage complex collaborative
design processes.  It is certainly possible for design
managers to have a very direct effect on the content of
design decisions during preliminary design, when a
relatively small number of global utility driven high-
level decisions are made top-down by a small number of
players. But once the design of a complex artifact has
been distributed to many players, the design decisions
are too complex to be made top-down, and the dominant
drivers become local utility maximization plus fit
between these local design decisions. In this regime
encouraging the proper influence relationships and local
search strategies is the primary tool available to design
managers. If these are defined inappropriately, we can
end up with designs that take too long to create, do not
meet important requirements, and/or miss opportunities
for significant utility gains through more creative (far-
ranging) exploration of the design space.
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