A Knowledge-Based Approach for Handling Exceptionsin Business Processes

Chrysanthos Dell arocas Mk Klein

Center for Coordination Science
Sloan Schod of Management
Massadhusetts Institute of Techndogy
Room E53-315,Cambridge, MA 02139,USA
{dell, m_klein} @mit.edu

ABSTRACT

This paper describes a novel knowledge-based approach for helping business process
designers and participants better manage exceptions (deviations from an ided sequence of
events caused by design errors, resource failures, requirement changes etc.) that can occur
during the enadment of a process This approach is based on exploiting a generic and
reusable body d knowledge describing what kinds of exceptions can occur in collaborative
work processes, how these exceptions can be deteded, and hawv they can be resolved. This
work bulds upon pevious eff orts from the MIT ProcessHandbook pojed and from reseach
on conflict management in coll aborative design.

1. INTRODUCTION

Businessprocessmodels typicdly describe the “normal” flow of eventsin an ided world. For
example, the model of a product development processtypicdly includes a “design product”
adivity, followed by a “build product” activity, which, in turn, is followed by a “deliver
product” activity. Redity, howvever, tends to be more complicated. During the enadment of a
business process a lot of exceptions, that is, deviations from the ided sequence of events,
might occur. For example, product design might prove to be inconsistent with the caabiliti es
of the manufaduring dant. Manufaduring stations might bregk down in the midd e of jobs.
Delivery trucks might go on strike. To asaure that a process is gill able to fulfill its
organizaional goas, process participants must be ale to deted, diagnose and successully
resolve such exceptional condtions as they occur.

Traditionaly, managers have been relying ontheir experience and undbrstanding d a process
in ader to hande deviations from the expeded flow of events. However, the rising
complexity of modern business processes and the accéerating pace with which these
proceses evolve and change has made the reliance on individual managers experience and
intuitionan increasingly less stisfadory way to ded with exceptions.

Business process modeling hes been used succesdully in order to increase understanding,
fadlitate analysis and enhance mmmunication among the various gakehdders invalved in
the design and enadment of an “ided” business process Our position is that analogous
model-based toadls can be built in order to limit the cmplexity of deding with exceptions.

The standard approadh o incorporating exception handliing in processmodels has been to try
to anticipate beforehand al posshble exceptional condtions that might arise and augment an
“ided” processmodel with additional condtional elements that represent exception handing
adions. This approach, havever, is problematic for a number of reasons. Firgt, it results in
cluttered, overly complex, models, which hinder instead of enhancing undrstanding and
communicaion. Seamnd, the aticipation d possble falure modes once ajain relies on the
experience and intuition o the model designers. Third, the gproach canna help with
exceptions that have not been explicitly hard-coded into the model.

This paper describes an encoded knowledge-based approach for handling exceptions in
business processes. Rather than requiring process designers to anticipate dl possble
exceptions up front and incorporate them into their models, this approac is based ona set of
novel process analysis tods, which assst designers to analyze ‘ided” process models,
anticipate posshle exceptions and suggest ways in which the “ided” process can be
instrumented in order to deted or even to avoid them. When exception manifestations occur,
the same tods can be used to dagnose their underlying causes, and suggest spedfic
interventions for resolving them. The gproacd is based onan extensible encoded knowledge
base of generic strategies for deteding, dagnasing and resolving exceptions. The remainder
of the paper will discusshow this approach works, how it relates to ou previous work in this

area and some diredions for future work.

2. AKNOWLEDGE-BASED APPROACH TO EXCEPTION HANDLING

2.1 Anticipating and Preparing for Exceptions

The first step in ou approach asssts process designers to determine, for a given “ided”
process model, the ways that the process may fail and then instrument the process ® that
these failures can be deteded o avoided. The principal ideahere is to compare aprocess
model against a taxonamy of process el ements anndated with passble failure modes. Our
idea is motivated by the observation that the caises of most process failures have a

straightforward association with ore of the three principal elements of business process

models: adivities, resources and constraints (describing gals and assumptions). Table 1 lists

some examples.

Exceptions related to | - Goals contain conflicts or inconsistencies

constraints - Unanticipated reguirement changes violate assumptions

Exceptions related to | - Wrong pocess &leded for stated gaals
activities - Processcontains design flaws

- Processcontains intrinsic posshiliti es of conflicts, deadlock, etc.

Exceptions related to | - Wrongresource asgned to task
I esour ces - Resourceunavail able
- Resourcefailsin the middle of task

Table 1. A Subset of Exception Causes.

A processelement taxonamy can be defined as a hierarchy of processelement templates, with
very generic dements at the top and increasingly spedalized elements below. For example,
Figure 1 depicts a small adivity taxonamy. Each adivity can have dtributes, e.g. that define
the dhallenges for which it is well-suited. Note that adivity spedalization is different from
decomposition, which invoves bre&king an adivity down into subadivities. While a
subadivity represents a part of a process a spedalization represents a “subtype” or “way of”

doing the process [10]. Resource and constraint taxonamies can be defined in a similar

manner.
Root
* agent unavailable
I
CoreActivities | Coordination Mechanisms
Order Fulfillment Manage Flow Manage Fit Manage Sharing
* order/invoice mismatc| | * misrouted * design conflict
* delayed

Pull-Based Push-Based
* resource poachin * manager bias

Figure 1. An Example of a Generic Activity Taxonamy with Fail ure Modes.

perform design

(tean 1)

distribute shared

t(ﬂs ?%%O)UVC% consolidate build
perform design sub-designs - product
(team 2)

alocae design

tasks (manager) Sghvﬁ
perform design
(team 3)

use product

Figure 2. An Example “Ided” Process Moddl.

Processelement templates are annaated with the ways in which they can fail, i.e. with their
charaderistic exception types. Fail ure modes for a given processtemplate can be uncovered
using failure mode aalysis [11]. Each process element in a taxonamy inherits al
charaderistic failure modes of its parent (generalizaion) and may contain additional fallure
modes which are spedafic to it.

Given an “ided” processmodel, to identify fail ure modes we neal orly identify the generic
process element templates that match ead element (adivity, resource, constraint) of the
model. The patentially applicable exception types will then consist of the union o all failure
modes inherited from the matching templates. We can see for example, that the “distribute
shared design resources’ activity in Figure 2 is a subtype of the generic “pull-based sharing’
processtemplate in Figure 1, since the resources are “pulled” by their consumers rather than
“pushed” (i.e. alocaed) by their producers. This template includes among its charaderistic
failure modes the exception cdled “poacing’, wherein resources go dspropationately to
lower priority tasks because agents with lower priority tasks happen to reserve them first. The
“deliver product” activity is a speddizaion d the “manage flow” template, with
charaderistic exceptions such as “item delayed”, “item misrouted” and so on. All adivities
also inherit the daraderistic fallure modes from the generalizations of these matching
templates, such as “resporsible agent is unavail able”, and so on.

The processdesigner can seled, from thislist of possble exception types, the ones that seem
most important in his’her particular context. He/she might know, for example, that the
“deliver product” processis already highly robust and that there is no reed to augment it with
additional exception handling capabiliti es.

For ead exception type of interest, the processdesigner can then dedde how to instrument
the processin order to deted these exceptions. While processes can fail in many dfferent
ways, such fallures have arelatively limited number of different manifestations, including
missed deallines, violations of artifad constraints, exceading resource limits, and so on.
Every exception type includes pointers to exception detedion processtemplates in the process
taxonamy that spedfy how to deted the symptoms manifested by that exception type. These
templates, orceinterleaved into the “ided” processmodel by the workflow designer, play the
role of “sentinels’ that chedk for signs of adua or impending failure. The template for
deteding the “resource poaching” exception, for example, operates by comparing the average
priority of tasks that quickly recave shared resources against the average priority of al tasks.
The “item delayed”, “agent unavail able”, and “item misrouted” exceptions can al be deteded
using time-out mecdhanisms. Similar pointers exist to excetion avoidance processs, whaose

purposeisto try to prevent the exceptional condtion from occurring at all .

2.2 Diagnosing Exceptions

When exceptions adually occur during the enadment of a process ou tools can assst
process participants in figuring ou how to rea¢. Just as in medica domains, seleding an
appropriate intervention requires understanding the underlying cause of the problem, i.e. its
diagnasis. A key challenge here, however, is that the symptoms reveded by the exception
detedion processes can suggest awide variety of possble underlying causes. Many dfferent
exceptions (e.g. “agent not available”, “item misrouted” etc.) typicdly manifest themselves,
for example, as missed deallines.

Our approad for diagnasing exception causes is based on feuristic dassficaion[2]. It works
by traversing a diagnasis taxonamy. Exception types can be aranged into a taxonamy
ranging from highly genera failure modes at the top to more spedfic ones a the bottom;
every exception type includes a set of defining charaderistics that need to be true in order to
make that diagnasis patentialy applicable to the aurrent situation (Figure 3).

When an exception is deteded, the resporsible process participant traverses the exception
type taxonamy top-down like a dedsion treg starting from the diagnases implied by the
manifest symptoms and iteratively refining the speaficity of the diagnases by eliminating
exception types whaose defining charaderistics are not satisfied. Distingushing among
candidate diagnoses will often require that the user get additional information abou the

current exception and its context, just as medicd diagnosis often involves performing
additional tests.

root

|

| |
| design error I | requirements chanf | resource unavailab|
| |

|
| resource poachinq | design conflict | | transport failure | |0rder/invoice mismal | manager bias | | agent unavailablq

1

Wi

Figure 3. A Subset of the Exception Type Taxonamy.

The user then has a spedfic set of questions that he/she can ask in order to narrow down the
exception dagnasis. If the gpropriate information is avail able on-line, then answering such

guestions and thereby elimi nating some diagnases can pdentialy be automated.

2.3 Resolving Exceptions

Once an exception hes been deteded and at |least tentatively diagnosed, oreisrealy to define
an prescription that resolves the exception and returns the processto a viable state. This can
be adieved, in ou approad, by seleding and instantiating ore of the generic exception
resolution strategies that are associated with the hypahesized dagnacsis. These strategies are
processes like any ather, are catured in aportion d the processtaxonamy, and are anndated
with attributes defining the precndtions that must be satisfied for that strategy to be
applicable. We have aceamulated rougHy 200such strategies to date, including for example:

» IF aprocessfails, THEN try adifferent processfor achieving the same goal

* |F a highly serial processis operating too slowly to med an impending dealline,
THEN pipeline (i.e. release partia resultsto allow later tasks to start ealier) or parallelize
to increase wncurrency

* |F an agent may be late in producing a time-criticd output, THEN see whether the
consumer agent will accept alessacarate output in exchange for aquicker resporse

Since a exception can have several possble resolutions, ead suitable for different
situations, we use a procedure identicd to that used in dagncsis to find the right one.
Imagine, for example, that we want a resolution for the diagnosis “agent unavail able”. We
start at the root of the process resolution taxonamy branch associated with that diagnasis
(Figure 4).

| find agent for task |

wait till agent available | | find new agent with same skillsl | change task to meet available sk

Figure 4. A Fragment of the Resolution ProcessTaxonamy.

The system user can prune suggested strategies based onwhich precondtions are satisfied,
and enad or customize astrategy seleded from the remainder. Note that the substantial input

may be neaded from the user in some caes in order to instantiate astrategy into spedfic
adions.

2.4 Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the gproac
described in the previous sdions. It consists of two crossreferenced taxonamies. a
spedalizaion taxonamy of process model entities (adivities, resources, constraints) and a
taxonamy of exception types.

Activity Type ; Exception Type

W | : DiagnOStic rules

di / Links to detection
Postconditions Links to avoidance
processes

Links to possible
exception types

Links to resolution
processes

“Process Taxonomy Exception Taxonomy

Figure 5. Overview of Exception Handling Knowledge Structures.

During processdesign time, process models are compared against the processtaxonamy in
order to identify pasgble failure modes. Once fail ure modes are identified, the exception type
taxonamy provides links to appropriate detedion and avoidance processes. During process
enaament time, exception manifestations are mmpared against the exception type taxonamy
in order to identify possble diagnoses. Once plausible diagnoses have been identified, the

exception taxonamy provides links to resolution processes.
3. RELATED WORK

The gproad described here integrates and extends two long-standing lines of research: one
addressng coordination science principles abou how to represent and Uilize process
knowledge, ancther addressng hav artificial intelligence techniques can be @plied to
deteding and resolving coriflictsin coll aborative design settings:

One comporent is abody d work pursued over the past five yeas by the ProcessHandbook
projed at the MIT Center for Coordination Science [3, 9, 1Q. The goa of this projed is to
produce arepaository of process knowledge and associated todls that help people to better
redesign aganizaiona processes, lean abou organizaions, and automaticaly generate
software. The Handbook dtabase mntinuesto grow and currently includes over 4500models
covering a broad range of business processes. A mature Windows-based tod for editing the
Handbook dtabase contents, as well as a Web-based tod for read-only access have been
developed. A key insight from this work is that a repository of business process templates,
structured as a spedadlizaion taxonamy, can assst people to design innowtive business
processes more quickly by allowing them to retrieve, contrast and customize interesting
examples, make “distant analogies’, and uilize ‘recombinant” (mix-and-match) design
tedhniques [5].

The other key comporent of this work is nealy a decale of development and evaluation d
systems for handing multi-agent conflicts in collaborative design [6, 7] and coll aborative
requirements capture [8]. This work resulted in principles and techndogy for automaticdly
deteding, dagnasing and resolving design conflicts between bah human and computational
agents, bulding upona knowledge base of rougHy 300 corflict types and resolution
strategies. This techndogy hes been applied succesdully in several domains including
architedural, locd areanetwork and fluid sensor design. A key insight from this work is that
design conflicts can be deteded and resolved using a knowledge base of generic and hghly
reusable cnflict management strategies, structured using dagnastic principles originaly

applied to medicd expert systems. Our experience to date suggests that this knowledge is
relatively easy to aaquire and can be gplied urchanged to multiple domains.

The work described in this paper integrates and extends these two lines of reseach in an
innowetive and, we believe, powerful way. The cantral insights underlying this integration are
that (1) businessprocessexceptions can be handed by generalizing the diagnostic dgorithms
and knavledge base underlying design conflict, and (2) the exception hending knavledge
base can be catured as a set of process templates that can be retrieved, compared and
customized using the principles emboded in the Process Handbook. The result of this
integration is an approach that allows process designers and participants to better take
advantage of insights colleded from a wide range of experts and damains when trying to
determine what exceptions can occur in their process as well as how such exceptions can be
deteded, dagnaosed and resolved.

4. CURRENT STATUSAND FUTURE WORK

To date, we have cgtured over 4500 generic processtemplates, 100exception types and 200
exception resolution strategies and have constructed a aossreferenced knowledge base with
thisinformation ontop d the ProcessHandbooktodls.

This paper has emphasized the use of our exception handling knavledge base & a dedsion
suppat tod for humans. Our ongang work is primarily focused on conreding ou
tedhindogy with automated process enadment systems, such as workflow controllers and
software agent systems. It is widely remgnzed that state-of-the at workflow techndogy
provides very rudimentary suppat for exception handling [1, 4. The result of our work will
be aprototype implementation d a domain-independent excegtion handing engine, which
oversees the enadment of a workflow script, monitors for exceptions and deddes
(automaticdly for the most part) how to intervene in order to resolve them. Given an “ided”
workflow script, the engine first uses the exception handing knavledge base in order to
anticipate patential exceptions and augment the system with additional adions that play the
role of software sentinels. During enadment time, these sentinels automaticdly trigger the
diagnastic services of the engine when they deted symptoms of exceptional condtions. The
diagnaostic services traverse the exception type taxonamy, seled (possbly with human
asgstance) adiagnasis and then seled and instantiate aresolution dan. The resolution danis
eventualy trandated into a set of workflow modificaion operations (e.g. add tod, remove
tod, modify conredion, etc.), which are dynamicaly applied to the exeauting workflow.

For further information abou our work, please seethe Adaptive Systems and Evolutionary
Software web site & http://ccs.mit.edwases/. For further information on the Process
Handbook,seehttp://ccs.mit.edw/

5. REFERENCES

10.

11.

P. Barthelmessand J. Wainer. Workflow Systems: afew Definitions and afew
Suggestions. Proc. Conf. onOrganizationd Computing S/stems (COOCS 95), Aug.
13-16, 1995, pp. 13847.

W. J. Clancey. Heuristic Clasdgfication. Artificial Intelligence 27(3), 1985, pp. 289
350.

C. Dellarocas, J. Lee T.W. Maone, K. Crowston and B. Pentland. Using a Process
Handbookto Design Organizational Processes. Proceadings of the AAA 1994 Sping
Sympaosium on Computationa Organzation Design, Stanford, CA, March 21-23, 1994,
pp. 5056.

C.A. Hllis, K. Keddara and G. Rozenberg. Dynamic Change Within Workflow
Systems. Proc. Conf. On Organizationd Computing Systems, (COOCS 95), Aug. 13
16, 1995, pp. 121.

G. Herman, M. Klein, et al. A Template-Based ProcessRedesign Methodd ogy Based
onthe ProcessHandbook.MIT Center for Coordination Science Working Paper #tba
M. Klein. Conflict resolutionin cooperative design. University of Illi nois at Urbana-
Champaign Tedhnicd Report UIUCDCS-R-89-1557.

M. Klein. Suppating Conflict Resolutionin Cooperative Design Systems. IEEE
Transactions on §stems, Man andCybernetics, 21(6), June 1991, pp. 13794390.

M. Klein. An Exception Handling Approacd to Enhancing Consistency, Completeness
and Corrednessin Coll aborative Requirements Capture. Concurrent Engineeing:
Research andApplications, 5 (1), March 1997, pp. 3#46.

T.W. Maone, K. Crowston, J. Lee ad B. Pentland. Tods for Inventing Organizations:
Toward aHandbook & Organizational Processes, Procealings of 2nd | EEE Workshop
on Enalling Tedh. Infrastructure for Collabarative Enterprises, April 20-22, 1993,
pp.7282.

T.W. Maoreg, et a. Toward ahandbook & organizational processes. MIT Center for
Coordination Science Working Paper 198, January 1997.To appea in Management
Science

D. Rahga. Software system failure mode and effeds analysis (SSFMEA)-atod for

reli ability growth. Proceadings of the Int’| Symp. on Reliahility and Maintainahlity
(ISRM’90), Tokyo, Japan, June 1990, pp. 27R77.

