
Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97),
London, UK, July 14-18, 1997

The SYNTHESIS Environment for Component-Based Software Development

Chrysanthos Dellarocas
Sloan School of Management

Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139, U.S.A.

Tel. +1 (617) 258-8115
dell@mit.edu

Abstract:

Component-based software development places an
emphasis on identifying and managing interdependencies
among preexisting pieces of software in order to integrate
them into new systems. Traditional software development
methodologies, on the other hand, place an emphasis on
representing components, leaving the description and
management of component interdependencies implicit, or
distributed among the components. To support
component-based software development, we need new
methodologies and tools which elevate the representation
and management of software component
interdependencies to a distinct design problem,
orthogonal to the specification and implementation of the
core functional pieces of an application. A core element
of such methodologies will be a “ design handbook” of
software component interconnection, which catalogues
common software interconnection dependencies and sets
of alternative protocols for managing them. SYNTHESIS, a
component-based software development environment
based on this perspective, has been developed and
successfully used to minimize the manual effort required
to integrate independently developed components into
new applications.

1. Introduction

During the past few years a range of technical,
economic, and social factors have come together to
encourage a new way of software engineering that is
often referred to as component-based software
engineering. This approach bases system development on
the definition of software architectures that capture the
needs of a given organization and on the selection and
integration of components that implement the pieces of
these architectures. The big promise of component-based
software engineering lies in the possibilit y to reuse
independently developed, off- the-shelf components in

order to build new applications more rapidly,
economically, and reliably than with traditional
approaches.

Despite the significant economic potential and
substantial research effort that has been put into
component-based software engineering, so far this new
paradigm of software development has failed to gain a
significant presence in large-scale, commercial
development projects [2, 6]. Part of the reason is related
to the diff iculty of locating appropriate components and
the legal issues surrounding their reuse. But even when
such issues have been resolved, the lack of software
development methodologies specifically designed to
support component-based development is discouraging
many software engineers from adopting it.

This paper argues that traditional software
development methodologies are not well suited to the
requirements of component-based software development.
It identifies the treatment of interdependencies among
software components as one fundamental area where
component-based development poses new requirements,
not met by traditional methodologies and tools. It
proposes a new perspective for developing software
systems which treats the interconnection of components
in a software system as a separate design problem,
entitled to its own representations and design frameworks.
It introduces SYNTHESIS, a software development
environment based on our perspective and reports on
experience gained by using the system to develop new
applications from sets of existing components. Finally, it
discusses related work and presents some directions for
future research.

2. Requirements for Component-Based
Software Development

In this section we identify a fundamental difference
between traditional and component-based software
development. We argue that this difference merits the

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

development of new methodologies specifically tailored
to the needs of the new paradigm. Finally, we introduce a
perspective on which such methodologies can be based.

Both traditional and component-based software
development methodologies need to specify the
requirements and overall architecture of the target
software system. However, from then on the two
paradigms of software development focus on a different
set of design activities.

The objective of traditional software development
methodologies is to facilit ate the creation of one or more
implementation-level modules which, together,
implement the functionality and data of a software
system. Despite the diversity of the various
methodologies in use today, they are all essentially
providing models and techniques that help answer the
following questions:

• How can we best divide the required functionality and
data of a system into a set of components.

• How can we best encode the required interactions
among components of a system into component
interfaces.

Traditional methodologies focus on defining
components, leaving the definition of interdependencies
among components implicit, and the implementation of
protocols for managing them fragmented and distributed
among the interacting components. At the implementation
level, software systems are sets of modules in one or more
programming languages. Although modules come under a
variety of names (procedures, packages, objects, clusters
etc.), they are all essentially abstractions for components.

Most programming languages directly support a small
set of primitive interconnection mechanisms, such as
procedure calls, method invocation, shared variables, etc.
Such mechanisms are not suff icient for managing more
complex dependencies that are commonplace in today's
software systems. Complex dependencies require the
introduction of more complex managing protocols,
typically comprising several li nes of code. By faili ng to
support separate abstractions for representing such
complex protocols, current programming languages force
programmers to distribute and embed them inside the
interacting components [14]. Furthermore, the lack of
means for representing dependencies and protocols for
managing them has resulted in a corresponding lack of
theories and systematic taxonomies of interconnection
dependencies and ways of managing them.

In component-based development, the components are
usually pre-existing and fixed, or customizable in a
limited way. The design focus then lies on integrating
existing components to form new systems. The essential

design questions that methodologies must help answer
become the following:

• How can we best select existing components to
implement a system’s functional pieces.

• How can we best manage the interdependencies and
mismatches among the selected components and
integrate them into a seamless system.

In this paper we will focus on the second question.
Traditional methodologies do not provide much help with
answering this question because they do not recognize
interdependencies as a distinct design entity, nor do they
provide any systematic guidance for designing
coordination protocols for managing such
interdependencies. As a result, most component
integration projects today are carried out in an ad-hoc
manner, resulting in frequent time and budget overruns
and the general perception that component integration is
more diff icult than it should be [5].

As a response to the previous observations, this paper
proposes a new perspective for specifying and
implementing software systems. This perspective can
form the basis for practical component-based software
development methodologies. It is based on coordination
theory [12] and applies concepts developed in the Process
Handbook project [4, 11]. Unlike current practice, our
perspective emphasizes the explicit representation and
management of dependencies among software activities
as distinct entities. The two main principles of our
perspective can be stated as follows:

• Explicitly represent software dependencies. Software
systems should be described using representations that
clearly separate the core functional pieces of an
application from their interdependencies, providing
distinct abstractions for each.

• Build design handbooks of component integration. The
field knowledge on component integration should be
organized in systematic taxonomies that provide
guidance to designers and facilit ate the generation of
new knowledge. Such taxonomies will catalogue the
most common kinds of interconnection relationships
encountered in practice. For each relationship, they will
contain sets of alternative coordination protocols for
managing it. In that way, they can form the basis for
design handbooks of component integration, similar to
the well -established handbooks that assist design in
more mature engineering disciplines.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

3. The SYNTHESIS Application Development
Environment

The coordination perspective on software design
introduced in the previous section has been reduced to
practice by building SYNTHESIS, an application
development environment based on its principles.
SYNTHESIS is particularly well suited for component-
based software development. This section presents a brief
introduction to the SYNTHESIS system. A detailed
description can be found in [3].

The current implementation of SYNTHESIS runs under
the Microsoft Windows 3.1 and Windows 95 operating
systems. SYNTHESIS itself has been implemented by
composing a set of components developed using different
environments (Intelli corp's Kappa-PC, Microsoft's Visual
Basic, and Shapeware's Visio).

SYNTHESIS consists of three elements:

• SYNOPSIS, a software architecture description language

• an on-line design handbook of dependencies and
associated coordination protocols

• a design assistant which generates executable
applications by successive specializations of their
SYNOPSIS description

3.1 SYNOPSIS: An Architecture Description
Language

SYNOPSIS supports graphical descriptions of software
application architectures at both the specification and the
implementation level. The language provides separate
language entities for representing software activities and
dependencies. It also supports the mechanism of entity
specialization. Specialization allows new entities
(activities and dependencies) to be defined as variations
of other existing entities. Specialized entities inherit the
decomposition and attributes of their parents and can
differentiate themselves by modifying any of those
elements. Specialization enables the incremental
generation of new designs from existing ones, as well as
the organization of related designs in concise hierarchies.
Finally, it enables the representation of reusable software
architectures at various levels of abstraction (from very
generic to very specific).

Activities
Activities represent the main functional pieces of an

application. They own a set of ports, through which they
interconnect with the rest of the system. Ports represent
interfaces through which resources are produced and
consumed by various activities.

An activity can optionally decompose into patterns of
simpler activities and dependencies which implement the
functionality intended by the composite activity. An
activity can have an optional association with a code-level
component which implements its intended functionality.
Examples of code-level components include source code
modules, executable programs, network services, etc.
SYNOPSIS provides a special notation for describing the
properties of software components associated with
activities.

Activities are distinguished into generic and
executable. Executable activities are activities which have
either a direct association to a code-level component, or a
decomposition whose members are all executable.
Generic activities are activities that do not have a direct
association to a code-level component and/or have a
decomposition where at least one member is not
executable.

Dependencies

Dependencies describe interconnection relationships
and constraints among activities. Like activities they can
optionally decompose into patterns of simpler
dependencies. They can have optional associations with
coordination protocols. Coordination protocols are
activities that introduce the additional code required in
order to manage their associated dependency.

Like activities, dependencies are also distinguished
into generic and executable. Executable (or managed)
dependencies are dependencies which have either a direct
association to an executable coordination protocol, or a
decomposition whose members are all executable.
Generic (or unmanaged) dependencies are dependencies
that do not have a direct association to an executable
coordination protocol and/or have a decomposition where
at least one member is not executable.

Using the above definitions, SYNOPSIS can be used
both to describe system specifications (sets of generic
activities and dependencies) as well as system
implementations (sets of executable activities and
dependencies). Furthermore, implementations can be
derived from specifications by successive specializations
of generic elements into executable. Figure 1 shows an
example of a software application specification and
implementation in SYNOPSIS.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

3.2 A Design Handbook of Software Component
Integration

The abilit y to represent dependencies and coordination
protocols as distinct entities from the components they
interconnect allows the construction of taxonomies that
systematize the field knowledge in integrating software
components, and provide guidance for solving such
problems in a routine manner. Such taxonomies should
contain:

• a catalog of the most common kinds of interconnection
dependencies encountered in software systems

• for each kind of dependency, a catalog of sets of
alternative coordination protocols for managing it

An important decision in making a taxonomy of
software interconnection is the choice of the generic
dependency types. If we are to treat software
interconnection as an orthogonal problem to that of
designing the core functional components of an
application, dependencies among components should
represent relationships which are also orthogonal to the
functional domain of an application. Fortunately, this
requirement is consistent with the nature of most
interconnection problems: Whether our application is
controlli ng inventory or driving a nuclear submarine,
most problems related to connecting its components
together are related to a relatively narrow set of concepts,
such as resource flows, resource sharing, and timing

dependencies. The design of associated coordination
protocols involves a similarly narrow set of mechanisms
such as shared events, invocation mechanisms, and
communication protocols.

After making a survey of existing systems, and
building on earlier results of coordination theory [12], we
have based the taxonomy of dependencies presented in
this paper on the assumption that component
interdependencies are explicitly or implicitly related to
patterns of resource production and usage. In other words,
activities need to interconnect with other activities, either
because they use resources produced by other activities,
or because they share resources with other activities.

Based on this assumption, the most generic
dependency famili es in our taxonomy include:

• Flow dependencies. Flow dependencies represent
relationships between producers and consumers of
resources. They are specialized according to the kind of
resource, the number of producers, the number of
consumers, etc. Coordination protocols for managing
flows decompose into protocols which ensure
accessibilit y of the resource by the consumers (usually
by physically transporting it across a communication
medium), usabilit y of the resource (usually by
performing appropriate data format conversions), as
well as synchronization between producers and
consumers.

• Sharing dependencies. They encode relationships
among consumers who use the same resource or
producers who produce for the same consumers.
Sharing dependencies are specialized according to the
sharing properties of the resource in use (divisibilit y,
consumabilit y, concurrency). Coordination protocols
for sharing dependencies ensure proper enforcement of
the sharing properties, usually by dividing a resource
among competing users, or by enforcing mutual
exclusion protocols.

• Timing dependencies. Timing dependencies express
constraints on the relative flow of control among a set
of activities. Examples include prerequisite
dependencies and mutual exclusion dependencies.
Timing dependencies are used to specify application-
specific cooperation patterns among activities which
share the same resources. They are also used in the
decomposition of coordination protocols for flow and
sharing dependencies.

A detailed description of our taxonomy of dependencies
and coordination processes can be found in [3].

Our SYNTHESIS prototype contains an on-line version
of our taxonomy of dependencies and coordination
processes. The design spaces of our taxonomy have been

Select Part
Numbe rs

Retr ieve Part
Descr ipt ion

Star t database

Display Part
Descr ipt ion

Start Viewer

Prerequisite Prerequisite

Data Flow
(Part

Descript ion
Fi lename)

Legend

Data Flow
(Part

Number)

Activity

Depend
ency

Port

Specification level

Select Part
Numbers

(C program)

Send part
number us ing

DDE; wrap
consumer ins ide
a DDE handler

Send SQL query
to Access

(Visual Basic
procedure)

Start MS Access
(DOS Command)

Open f i le in MS
Word

(Function provided
by Word OLE

interface)

Start MS Word
(DOS Command)

Place
precedent in
initialization

module

Place
precedent in
initialization

module

Store f i lename in
local variable;

transmit to
consumer us ing

Visual Basic 's
OLE inter face

Legend
Component

Coord
Process

Port

Implementation level

Figure 1: Representation of a simple file
viewer application using SYNOPSIS.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

implemented by hierarchies of increasingly specialized
SYNOPSIS entities. For example, Figure 2 shows a partial
hierarchy of increasingly specialized processes for
managing prerequisite dependencies. Each process
contained in the handbook contains attributes that enable
the system to automatically determine whether it is a
compatible candidate for managing a dependency
between a given set of components.

3.3 A Design Process for Generating Executable
Applications

SYNTHESIS supports a process for generating
executable systems by successive specialization of their
SYNOPSIS descriptions. The process can be summarized as
follows:

1. Users describe their application using SYNOPSIS, as a
pattern of activities connected through dependencies.

2. The design assistant of SYNTHESIS scans the
application description and iteratively does the
following for each generic (i.e. not executable)
application element:

a) It searches the on-line design handbook for
compatible specializations.

b) It selects one of the compatible specializations
found, either automatically, or by asking the user.
If no compatible specialization can be found, it
asks the user to provide one.

c) It replaces the generic application element with the
selected specialization and recursively applies the
same process to all elements in the decomposition
of this element.

3. After all application elements have been replaced by
executable specializations, the design assistant
integrates them into a set of modules in one or more

languages and generates an executable application out
of the collection.

Figure 3 shows the configuration of SYNTHESIS

windows during the design process.

The above design process minimizes the manual effort
required to integrate software components into new
systems. Users only need to participate in the
specialization process by making the final selection when
more than one compatible specializations have been
found. In the rare cases when no compatible
specialization can be found, users need to provide the
code for such a specialization. Specializations thus
provided become a permanent part of the repository.

4. Using SYNTHESIS to Facilitate Component-
Based Software Development

4.1 Overview

We have tested the capabiliti es of SYNTHESIS by using
it to build a set of applications by integrating
independently written pieces of software. Each
experiment consisted in:

• describing a test application as a SYNOPSIS diagram of
activities and dependencies

• selecting a set of pre-existing components exhibiting
various mismatches to implement activities

Prerequisite
Dependency

Event
Synchronization

Use
Semaphore
Signaling

Create File
upon

Termination

Semaphore
Signaling in

UNIX

Semaphore
Signaling in

OS/2

Increas ing ly spec ia l ized Coord inat ion Processes

Precedent
Calls

Consequent

Generic
Process Type of Event

Execution
Environment

DESIGN
DIMENSION:

GENERIC EXECUTABLE

Manage

Figure 2: A hierarchy of increasingly
specialized coordination protocols for
managing prerequisite dependencies.

Figure 3: Configuration of SYNTHESIS windows
during the design process

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

• using the design process outlined above to semi-
automatically manage dependencies and integrate the
selected components into an executable system

• exploring alternative executable implementations based
on the same set of components

The results of our experiments are summarized in
Table 1. Overall , we used SYNTHESIS to build 4 test
applications. Each application was integrated in at least
two different ways. For example, for one application we
built one implementation where components were
organized around client/server interactions, and a second
where the same components were organized around peer-
to-peer interactions. This resulted in a total of 14 different
implementations. SYNTHESIS was able to build all 14
implementations, typically generating between 30-200
lines of additional glue code in each case in order to
manage interdependencies and integrate the components.
In only 2 cases, users had to manually write 16 lines of
code (each time), to implement two data conversion
routines that were missing from the design handbook.
Reference [3] contains a detailed description of our
experiments.

4.2 Example: Building a Collaborative Editor by
Integrating Existing Components

This section presents one of our experiments in more
detail . It also serves as an example of how SYNTHESIS can

form the basis for a methodology for component-based
software development.

In our experiment, we used SYNOPSIS to create a
collaborative editor architecture, loosely based on the
ideas of Knister and Prakash [7]. Collaborative editors
allow the joint concurrent editing of the same document
by a group of people. We selected an existing single-user
editor and mapped the activities of our architecture to
source code modules of that system. Then, we used
SYNOPSIS and its on-line design handbook of coordination
protocols in order to manage the dependencies of our
architecture and integrate the resulting set of components
and coordination protocols into an executable
collaborative editor application for Microsoft Windows.
Finally, we reused the same collaborative editor
architecture and used SYNTHESIS in order to generate an
equivalent application for UNIX.

Our collaborative editor architecture implements a
collaboration protocol loosely based on the one presented
in [7]. The following is a brief description of the protocol:

The protocol is based on the designation of one of the
participants in an editing session as master. Master
participants have complete editing capabiliti es. The
remaining participants are observers, with no editing
capabiliti es. Observers see every change and cursor
movement made by the master; the observer's cursor is in
"lock-step" with the master's cursor. Observers cannot
perform any operations which change the text. If
attempted, such operations simply have no effect.

Experiment Description Components Results
File Viewer A simple system which

retrieves and displays
the contents of user-
selected files.

User interface component written in
C; filename retrieval component
written in Visual Basic; file display
component implemented using
commercial text editor.

SYNTHESIS integrated components suggesting two
alternative organizations (client/server, implicit
invocation); all necessary coordination code was
automatically generated in both cases.

Key Word in
Context

A system that produces a
listing of all circular
shifts of all i nput lines in
alphabetical order [18].

Two alternative implementations for
each component (both written in C):
as a server and as a UNIX filter.

3 different combinations of f ilter and server
implementations were each integrated in 3 different
organizations (see Table 2). SYNTHESIS generated
most coordination code; users had to manually write
16 lines of code in 2 cases

Interactive
TEX

A system that integrates
the standard components
of the TEX document

typesetting system in a
WYSIWYG ensemble.

Standard executable components of
TEX system.

Target application was completely described in
SYNOPSIS. SYNTHESIS was able to generate
coordination code automatically.

Collaborative
Editor

A system which extends
the functionality of
existing single user
editors with group
editing capabiliti es [7].

Micro-Emacs [10] source code was
used to implement single-user
editor.

Same system description was specialized in two
different ways to generate micro-Emacs-based group
editors for Windows and UNIX.

Table 1: Summary of experiments of using SYNTHESIS to facilitate the integration of existing software
components in new applications.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

Editor

local_event
(Integer)

Master
Released

Master
Acquired

Master
Exists

Fi le Saved

File is
Current

global_eve
nt (Integer)

Read Fi le B e g i n
f i l e n a m

e
(S t r i n g)

Save Fi le
B e g i n

E n d

Quit EditorB e g i n

Acquire
Master

B e g i n

E n d

B e g i n

Release
Master

B e g i n

E n d

B e g i n

Send Local
Event

B e g i n

e v e n t
(I n t e g e r)

e v e n t
(In teger)Editor

Event
Loop

e v e n t
(In teger)

g l o b a l _ e
vent

(In teger)

Editor
User

Interface

qu i t
ed i to r

a c q u i r e
m a s t e r

r e l e a s e
m a s t e r

f i l ename
(St r ing)

L o c k s t e p
P r e r e q

L o c k s t e p
P r e r e q

L o c k s t e p
P r e r e q

L o c k s t e p
F l o w

Locks tep
F low

Figure 5: Decomposition of Editor activity.

At all ti mes, at most one participant can be the master.
All others are observers. When an editing session starts,
there is no master. During that time, any participant can
take control and become the master by pressing a
designated key-sequence (which might be editor-
dependent). During the session, a master may relinquish
control by pressing another key-sequence. Once there is
no master, all participants are once again allowed to take
control.

During time periods when there is no master, all
participants are allowed to individually edit their buffers.
Each local editing activity is then propagated to all
participants. The result is a truly egalitarian mode of
collaborative editing.

Any number of users can participate in a collaborative
editing session. Participants can enter and leave the
session at will , simply by starting or quitting their
instance of the editor program. When a new participant
enters the session, if there is a master, the current contents
of the master's buffer are written back to disk, before they
are loaded into the new participant's buffer. In this way, it
is ensured that the buffer contents of all participants are
identical at all ti mes.

A SYNOPSIS architecture for describing a collaborative
editor system which supports the collaboration protocol
described above is given in Figure 4. The architecture
interconnects a set of simpler Editor activities,
corresponding to individual session participants. The
decomposition of Editor activities is given in Figure 5.

Editor

e v e n t
(In teger)

M a s t e r
R e l e a s e d

M a s t e r
A c q u i r e d

M a s t e r
Exists

F i l e Saved

Fi le is
C u r r e n t

g l o b a l _ e v e n t
(In teger)

Editor

e v e n t
(In teger)

M a s t e r
R e l e a s e d

M a s t e r
A c q u i r e d

M a s t e r
Exists

F i l e Saved

Fi le is
C u r r e n t

g l o b a l _ e v e n t
(In teger)

Cumulat ive
Flow

Prod
ucer

Cons
umer

Prod
ucer

Cons
umer

Locks tep
Prerequisi te

Prevent ion

Locks tep
Prerequisi te

Prevent ion

Collaborat ive Editor

Figure 4 : Top level decomposition of collaborative editor architecture with two participants.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

The operation of the overall system is based on a Flow
dependency for broadcasting a participant’s keystrokes to
all participants, and a set of Prevention dependencies,
each connecting a participant to all other participants
(except itself). Prevention dependencies belong to the
general family of timing dependencies of our taxonomy.
They specify that the occurrence of an activity X
(enabler) prevents further occurrences of an activity Y
until a third activity Z (disabler) occurs, in which case
occurrences of Y are re-enabled (Figure 6).

In our system, each Prevention dependency is
"enabled" whenever a participant acquires master status.
It is "disabled" whenever that same participant releases
master status. It connects to the Master Exists port of all
other participants. While "enabled", a Prevention
dependency prevents the execution of all Editor
subactivities connected to the Master Exists port of all
participants except the one who acquired master status.
These subactivities include the abilit y to broadcast a
participant’s local keystrokes, as well as the abilit y to
acquire and release master status. The resulting effect is
that only the current master can make its keystrokes
visible to everyone’s local editor copy and only the
master can release master status.

Each Editor activity can be based on an existing
single-user editor component. The source code of the
editor must be available in order to use it in this system.
The activities depicted in Figure 5 must be mapped to
source code modules of the single-user editor using the
component description language of SYNOPSIS (see [3] for
details).

In our experiment we used MicroEmacs [10] as our
single-user editor component. MicroEmacs is written is C
and its source code is available for free. There exist
versions of the system for both UNIX and Windows
environments.

Each version of MicroEmacs was “ fitted” into our
generic architecture with a minimal need for manual
modifications, very similar to those described in [7]. Then
SYNOPSIS was able to manage the same set of

dependencies with coordination protocols specific for
each execution environment in order to generate two
alternative executable implementations of the same
system (one for UNIX, one for Windows).

The experiment provided an excellent example of how
component-based software development can facilit ate the
reuse of software architectures in order to facilit ate the
generation of applications for multiple platforms.

5. Related Work

5.1 The Process Handbook Project

The work reported in this paper grew out of the
Process Handbook project at MIT’s Center for
Coordination Science [4, 11]. The Process Handbook
project applies the ideas of coordination theory [12] to the
representation and design of business processes. The goal
of the Process Handbook project is to provide a firmer
theoretical and empirical foundation for such tasks as
enterprise modeling, enterprise integration, and process
re-engineering. The project revolves around a software
tool, called the “process handbook” , which contains rich
descriptions of how different organizations perform
similar processes, including the relative advantages of the
alternatives. SYNOPSIS has borrowed the ideas of
separating activities from dependencies and the notion of
entity specialization from the Process Handbook.
SYNOPSIS has moved beyond the Process Handbook in
refining the process representation so that it can describe
software applications at a level precise enough for code
generation to take place, and in defining a repository of
dependencies and coordination protocols for the
specialized domain of software systems.

5.2 Architecture Description Languages

Architecture Description Languages (ADLs) provide
support for representing software systems in terms of
their components and their interconnections [8, 15]. They
often provide separate abstractions for representing
components and their interconnections. SYNOPSIS shares
many of the goals and principles of many recent ADLs,
most notably UniCon [16]. However, whereas previously
proposed architectural languages only provide support for
implementation-level connector abstractions (such as a
pipe, or a client/server protocol), SYNOPSIS is the first
language which also supports specification-level
abstractions for encoding interconnection relationships
(dependencies). Furthermore, apart from introducing a
new architectural language, this work proposes a more
general perspective on designing systems which also

Prevent ion

Z

X End YBegin

Enable

E
n

d

End Begin

An occur rence o f X prevents
fur ther occurrences o f Y

An occur rence o f Z re-enab les fur ther

occur rences o f Y

Figure 6: Prevention dependencies.

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

includes the development of design handbooks for
activities and dependencies as well as a design process for
generating executable systems by successive
specializations of their architectural descriptions.

5.3 Component Frameworks

Component frameworks such as OLE, CORBA,
OpenDoc, etc. [1] facilit ate the interoperation of
independently developed components by limiting the
kinds of allowed interactions and by providing a
standardized infrastructure for managing them.

Component frameworks and our coordination
perspective represent two very different philosophies in
component-based software development. Component
frameworks, once again, place the emphasis on
components. They provide a fixed infrastructure for
managing component interdependencies (middleware)
and require components to adhere to a specific set of
standards in order to interoperate.

Our coordination perspective, in contrast, is based on
the belief that the identification and management of
software dependencies should be elevated to a design
problem in its own right. Therefore, dependencies should
not only be explicitly represented as distinct entities, but
furthermore, when deciding on a managing protocol, the
full range of possibiliti es should be considered with the
help of design handbooks. Components in SYNOPSIS

architectures need not adhere to any standard and can
have arbitrary interfaces. Provided that the right
coordination protocol exists in its repository, SYNTHESIS

will be able to interconnect them. Furthermore,
SYNTHESIS is able to suggest several alternative ways of
managing an interconnection relationship and thus
possibly generate more eff icient implementations. Finally,
open interconnection protocols defined in specific
component frameworks can be incorporated into
SYNTHESIS repositories as one, out of many, alternative
ways of managing the underlying dependency
relationships.

6. Discussion and Future Work

Component-based software engineering builds new
software systems by integrating existing components.
Identifying and properly managing the interdependencies
among components becomes a central concern in this new
paradigm. Software engineering methodologies
specifically geared towards component-based
development need to elevate the representation and
management of interdependencies among software

components to a distinct design problem, entitled to its
own abstractions and design taxonomies.

SYNTHESIS is one such methodology and toolset. It is
based on an architecture description language that clearly
separates software activities and dependencies, and on a
design handbook that contains the most common types of
dependencies encountered in software systems, as well as
sets of alternative coordination processes for managing
them.

The practical advantages of SYNTHESIS include:

• Easier integration of code-level components. SYNTHESIS

can take advantage of its on-line design handbook (a
systematic codification of f ield knowledge in
component integration) in order to minimize the need
for additional manually written code to bridge
mismatches and manage dependencies among software
components.

• Support for rapid multi -platform development. When
applications are ported to a new execution environment,
their abstract architecture (activities and dependencies)
remains unaffected. The parts most likely to require
modification are the coordination protocols that manage
their dependencies. By expressing new applications as
SYNOPSIS diagrams, dependencies can be managed
using alternative coordination protocols in order to
generate code for multiple platforms beginning from a
single system description. The experiment discussed in
Section 4.2 provided an example of how SYNTHESIS can
be used to generate code for multiple platforms from a
single SYNOPSIS description.

• Superior insight into the range of alternative
implementations. The explicit representation of
dependencies as distinct entities which are subsequently
managed by consulting a design handbook, encourages
designers to consider a wide range of alternative ways
of implementing their systems. We are confident that
this will result in a more systematic and rational way of
organizing large-scale systems.

• Easier application maintenance. Designers often need
to change the implementation of activities, in order to
reflect changes in functional requirements or evolutions
in component implementation. Applications will be
easily reconstructed after such changes, by reusing the
same architectural diagram and simply managing again
the dependencies of the affected activities with the rest
of the system.

Our initial experience with SYNTHESIS has provided
positive evidence to support our claims on small -scale
systems. With our future research we plan to demonstrate
the advantages of our approach as a basis for building and

Presented at the 8th International Workshop on Software Technology and Engineering Practice (STEP’97), London, UK,
July 14-18, 1997

maintaining large-scale software systems out of existing
parts.

References

1. Richard M. Adler. Emerging Standards for
Component Software. IEEE Computer, March 1995,
pp. 68-77.

2. T. J. Biggerstaff and A. J. Perlis. Software
Reusabilit y. Volumes 1 and 2, ACM Press/Addison
Wesley, 1989.

3. Chrysanthos Dellarocas. A Coordination Perspective
on Software Architecture: Towards a Design
Handbook for Integrating Software Components
(Ph.D. Thesis). MIT Center for Coordination Science
Working Paper #193, February 1996. Also available
from http://ccs.mit.edu/ccswp193/main.html

4. C. Dellarocas, J. Lee, T. W. Malone, K. Crowston and
B. Pentland. Using a Process Handbook to Design
Organizational Processes. In Proceedings, AAAI
Spring Symposium on Computational Organization
Design, March 21-23, 1994, Stanford, CA, pp. 50-56.

5. D. Garlan, R. Allen and J. Ockerbloom. Architectural
Mismatch or Why it's hard to build systems out of
existing parts. In Proceedings, 17th International
Conference on Software Engineering, Seattle WA,
April 1995.

6. T. Capers Jones. Reusabilit y in Programming: A
Survey of the State of the Art. IEEE Transactions on
Software Engineering, Vol. 10, No. 5, September
1984, pp. 488-494.

7. M. J. Knister and A. Prakash. DistEdit: A
Distributed Toolkit for Supporting Multiple Group
Editors. In Proceedings, CSCW 90, Los Angeles, CA,
October 1990, pp. 343-355.

8. Paul Kogut and Paul Clements. Features of
Architecture Representation Languages. Carnegie
Mellon University Technical Report CMU/SEI.
Number to be assigned. Draft of December 1994.

9. Charles W. Krueger. Software Reuse. ACM
Computing Surveys, Vol. 24, No. 2, June 1992, pp.
131-183.

10. D. M. Lawrence and B. Straight. MicroEmacs Full
Screen Text Editor Reference Manual, version 3.10,
March 1989.

11. T.W. Malone, K. Crowston, J. Lee and B. Pentland.
Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes, In
Proceedings, 2nd IEEE Workshop on Enabling Tech.
Infrastructure for Collaborative Enterprises, April
20-22, 1993.

12. Thomas W. Malone and Kevin Crowston. The
Interdisciplinary Study of Coordination. ACM
Computing Surveys, Vol. 26, No. 1, March 1994, pp.
87-119.

13. D. L. Parnas. On the Criteria to Be Used in
Decomposing Systems Into Modules.
Communications of the ACM, Vol. 15, No. 12,
December 1972, pp. 1053-1058.

14. Mary Shaw. Procedure Calls Are the Assembly
Language of Software Interconnection: Connectors
Deserve First-Class Status. Carnegie Mellon
University, Technical Report CMU-CS-94-107.
January 1994.

15. Mary Shaw and David Garlan. Characteristics of
Higher-level Languages for Software Architecture.
Technical Report CMU-CS-94-210. Also appears as
CMU/SEI-94-TR-23, ESC-TR-94-023.

16. Mary Shaw, Robert DeLine, and Daniel Klein.
Abstractions for Software Architecture and Tools to
Support Them. IEEE Transactions of Software
Engineering 21, 4, April 1995, pp. 314-335.

