
Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97),
June 3-5, 1997, Pittsburgh, PA.

Toward a Design Handbook for Integrating Software Components

Chrysanthos Dellarocas
Sloan School of Management

Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139, U.S.A.

Tel: +1 (617) 258-8115
dell@mit.edu

Abstract:

In component-based software development the
identification and proper management of
interconnections among the pieces of a system becomes
a central concern. Nevertheless, today’s programming
languages and tools still place an emphasis on
representing components, leaving the description and
management of component interdependencies implicit,
or distributed among the components. This paper
proposes a new perspective for designing software
which elevates the representation and management of
software component interdependencies to a distinct
design problem, orthogonal to that of representing and
implementing the core functional pieces of an
application. The perspective is based on a taxonomy of
common software interconnection dependencies and
sets of alternative protocols for managing them. The
taxonomy can form the basis of design handbooks for
guiding the systematic solution of component
integration problems. SYNTHESIS, a prototype software
application development tool based on that perspective,
has been developed and successfully used to minimize
the manual effort required to integrate independently
developed components into new applications.

1. Motivation

As the size and complexity of software systems
grows, the identification and proper management of
interconnection dependencies among various pieces of a
system has become responsible for an increasingly
important part of the development effort. In today’s
large systems, the variety of encountered
interconnection dependencies (such as communication,
data translation, resource sharing, and synchronization
dependencies) is very large, while the complexity of

protocols for managing them can be very high.
Dependencies among software components are

especially important in component-based software
development. In this case, the core functional elements
of an application are implemented using off- the-shelf
components. The focus of the design effort then lies in
integrating these components by identifying and
properly managing their interdependencies and
mismatches. The practical diff iculty of achieving wide-
spread software reuse is a manifestation of the fact that
component integration is not a trivial problem.
Nevertheless, most current programming languages and
tools have so far failed to recognize component
interconnection as a distinct design problem which
should be separated from the specification and
implementation of the underlying components.

The distinct nature and equal importance of
components and dependencies is captured relatively well
in high-level, architectural descriptions of systems. In
such descriptions components are typically depicted
using boxes and dependencies using arrows. However,
at that level of description dependencies are usually
informal artifacts and their exact translation into
implementation-level concepts is not obvious.

As design moves closer to implementation, current
design and programming tools increasingly focus on
components, leaving the description of
interdependencies among components implicit, and the
implementation of protocols for managing them
fragmented and distributed in various parts of the
system. At the implementation level, software systems
are sets of modules in one or more programming
languages. Although modules come under a variety of
names (procedures, packages, objects, clusters etc.),
they are all essentially abstractions for components.

Most programming languages directly support a
small set of primitive interconnection mechanisms, such
as procedure calls, method invocations, shared
variables, etc. Such mechanisms are not suff icient for

managing more complex dependencies that are
commonplace in today's software systems. Complex
dependencies require the introduction of more complex
managing protocols, typically comprising several li nes
of code. By faili ng to support separate abstractions for
representing such complex protocols, current
programming languages force programmers to distribute
and embed them inside the interacting components [13].
Furthermore, the lack of means for representing
dependencies and protocols for managing them has
resulted in a corresponding lack of theories and
systematic taxonomies of interconnection relationships
and ways of managing them.

This expressive shortcoming of current languages
and tools is directly connected to a number of practical
problems in software design:

• Discontinuity between architectural and
implementation models. There is currently a gap
between architectural representations of software
systems (sets of activities explicitly connected through
rich vocabularies of informal relationships) and
implementation-level descriptions of the same systems
(sets of modules implicitly connected through
defines/uses relationships).

• Difficulties in application maintenance. By not
providing abstractions for localizing information about
dependencies, current languages force programmers to
distribute managing protocols in a number of different
places inside a program. Therefore, in order to
understand a protocol, programmers have to look at
many places in the program. Likewise, in order to
replace a protocol, modifications must be made in
many different modules.

• Difficulties in component reuse. Components
written in today’s programming languages inevitably
contain some fragments of coordination protocols
from their original development environments. Such
fragments act as (often undocumented) assumptions
about the structure of the application where such
components will be used. When attempting to reuse
such a component in a new environment, such
assumptions might not match the interdependency
patterns of the target application. In order to ensure
interoperabilit y, the original assumptions then have to
be identified, and subsequently replaced or bridged
with the valid assumptions for the target application
[7]. In many cases this requires extensive code
modifications or the introduction of additional code
around the component. In most cases, such
modifications are designed and implemented in an ad
hoc manner.

Based on the previous observations this paper claims
that, if we are to achieve large-scale component-based

software development, we need new methodologies and
tools which treat the interconnection of software
components into new applications as a distinct design
problem, entitled to its own representations and design
frameworks. Such methodologies will be based on
theories of component interconnection that organize and
systematize the existing knowledge in the field of
component integration, as well as facilit ate the creation
of new knowledge in the field.

To this end, Section 2 of this paper proposes a
framework for studying software component
interconnection. The framework is based on software
system representations that provide distinct abstractions
for components and their interdependencies. Such
representations allow the systematic classification of
different kinds of dependencies and associated
coordination protocols into design handbooks of
component integration, similar to the well -established
handbooks that assist design in more mature engineering
disciplines. Section 3 briefly reports on SYNTHESIS, a
component-based software development environment
based on our framework. Section 4 discusses related
work. Finally, Section 5 sums up our conclusions and
presents some directions for future research.

2. A Framework for Studying Software
Component Interconnection

2.1 A Coordination Perspective for
Representing Software Systems

One of the reasons behind the failure of today’s
programming languages and methodologies to recognize
component interconnection as a distinct design problem
is the lack of expressive means for representing
interdependencies and their associated coordination
protocols as distinct and separate entities from the
interacting components. Therefore the first ingredient of
our framework is a representation that achieves this
distinction. The representation is based on the principles
of coordination theory.

Coordination theory [12] is an emerging research
area that focuses on the interdisciplinary study of
coordination. One of the intended applications of
coordination theory is the design and modeling of
complex systems, ranging from computer systems to
real-li fe organizations. Coordination theory views such
systems as collections of interdependent processes
performed by machine and/or human actors. Processes
are sets of activities. Coordination theory defines
coordination as the management of dependencies among
activities. It makes a distinction between two orthogonal
kinds of activities:

Select Part
Numbers

Data Flow
(Part

Number)

Retrieve Part
Descript ion

Start database

Display Part
Descript ion

Start Viewer

Prerequisite Prerequisite

Data Flow
(Part

Description
Filename)

Activity Depend
ency

Legend

Specification level

Select Part
Numbers

(C program)

Send par t
number us ing

DDE; wrap
consumer ins ide
a DDE hand le r

Send SQL
query to Access

(Visual Basic
procedure)

Star t MS
Access
(D O S

C o m m a n d)

Open fi le in MS
Word

(Function provided
by Word OLE

interface)

Star t MS Word
(D O S

C o m m a n d)

Place
precedent in
ini t ial izat ion

modu le

Place
precedent in
ini t ial izat ion

modu le

Store f i lename in
local var iable;

t ransmit to
consumer us ing

Visua l Bas ic 's OLE
interface

Componen t
Coord

Protocol

Legend

Implementation level

Figure 1: Representing a software application
as a set of activities interconnected through
dependencies.

• Production (or core) activities. Activities directly
related to the stated goals of a system. For example,
the SQL engine of a database system would quali fy as
a production activity in that system.

• Coordination activities. Activities which do not
directly relate to the stated goals of a process, but are
necessary in order to manage interdependencies
among production activities. Algorithms that control
concurrent access in multi -user databases would be
considered coordination activities under this
framework.

The above definitions suggest representations in
which software systems are depicted as sets of
interdependent software activities. At the specification
level, activities represent the core functional elements of
the system while dependencies represent their
interconnection relationships and constraints. At the
implementation level, activities are mapped to software
components that provide the intended functionality,
while dependencies are mapped to coordination
protocols that manage them. Figure 1 depicts an
example of a software system specification and
implementation using such a representation.

2.2 A Design Handbook for Integrating
Software Components

The existence of representations that treat
dependencies and coordination processes as distinct

entities enable the construction of taxonomies of
software interconnection problems and solutions. This
section presents the beginnings of such a taxonomy. The
taxonomy contains the following elements:

• a catalog of the most common kinds of
interconnection dependencies encountered in software
systems

• for each kind of dependency, a catalog of sets of
alternative coordination protocols for managing it

Our taxonomy uses multi -dimensional design spaces
to classify both dependencies and coordination
protocols. It begins by identifying a small number of
generic dependencies. For each generic dependency, it
defines a number of design dimensions that can be used
to further specialize the relationship. These dimensions
form a design space that contains different
specializations of the given dependency. Each point in
the design space defines a different specialized
dependency type.

Furthermore, for each dependency, our taxonomy
identifies a few generic coordination processes that
manage it. It also defines a design space that contains
several related specialized versions of these
coordination protocols. The dimensions of the design
space are the questions the designer will have to answer
in order to select one of the available coordination
processes for managing a given dependency.

2.2.1 Overview of the Dependencies Space

An important decision in making a taxonomy of
software interconnection problems is the choice of the
generic dependency types. If we are to treat software
interconnection as an orthogonal problem to that of
designing the core functional components of an
application, dependencies among components should
represent relationships which are also orthogonal to the
functional domain of an application. Fortunately, this
requirement is consistent with the nature of most
interconnection problems: Whether our application is
controlli ng inventory or driving a nuclear submarine,
most problems related to connecting its components
together are related to a relatively narrow set of
concepts, such as resource flows, resource sharing, and
timing dependencies. The design of associated
coordination protocols involves a similarly narrow set of
mechanisms such as shared events, invocation
mechanisms, and communication protocols.

After making a survey of existing systems, and
building on earlier results of coordination theory
[11,12], we have based the taxonomy of dependencies
presented in this paper on the assumption that
component interdependencies are explicitly or implicitly

related to patterns of resource production and usage. In
other words, activities need to interconnect with other
activities, either because they use resources produced
by other activities, or because they share resources with
other activities.

Based on this assumption, the most generic
dependency families in our taxonomy include:

• Flow dependencies. Flow dependencies represent
relationships between producers and consumers of
resources. They are specialized according to the kind
of resource, the number of producers, the number of
consumers, etc. Coordination protocols for managing
flows decompose into protocols which ensure
accessibilit y of the resource by the consumers,
usabilit y of the resource, as well as synchronization
between producers and consumers.

• Sharing dependencies. They encode relationships
among consumers who use the same resource or
producers who produce for the same consumers.
Sharing dependencies are specialized according to the
sharing properties of the resource in use (divisibilit y,
consumabilit y, concurrency). Coordination protocols
for sharing dependencies ensure proper enforcement
of the sharing properties, usually by dividing a
resource among competing users, or by enforcing
mutual exclusion protocols.

• Timing dependencies. Timing dependencies
express constraints on the relative flow of control
among a set of activities. Examples include
prerequisite dependencies and mutual exclusion
dependencies. Timing dependencies are used to
specify application-specific cooperation patterns
among activities which share the same resources. They
are also used in the decomposition of coordination
protocols for flow and sharing dependencies.

It is not possible to complete describe the taxonomy
in the limited space of this paper. Instead, the following
sections will present a small subset of the taxonomy of
flow dependencies, as well as an example of how it can
be used to guide the design of software interconnection
protocols. A full description of the taxonomy is
contained in [3].

2.2.2 A Taxonomy of Flow Dependencies

Flow dependencies encode relationships among
producers and consumers of resources. This section
presents a generic model for classifying flow
dependencies and a framework for designing
coordination protocols for such dependencies. The
framework is based on some results of coordination
theory, extended and adapted for the field of software
components.

Malone and Crowston [12] have observed that,
whenever flows occur, one or more of the following sub-
dependencies are present:

• Usabilit y. Users of a resource must be able to
effectively use the resource.

• Accessibilit y. In order for a resource to be used by
an activity, it must be accessible to that activity.

• Prerequisite. A resource can only be used after it
has been produced.

In the following paragraphs we will i ntroduce
dependency and coordination process design spaces for
each of the lower-level dependencies. The design space
for generalized flow dependencies is defined by the
product of the design spaces of the component
dependencies.

Usabilit y Dependencies. Usabilit y dependencies state
the fact that resource users should be able to properly
use produced resources. This is a very general
requirement that encompasses compatibilit y issues such
as:

• data type compatibility
• format compatibility
• database schema compatibility
• device driver compatibility

The exact meaning and range of usabilit y
considerations varies with each kind of resource. One
interesting observation resulting from this work is that,
irrespective of the particular usabilit y issue being
managed, coordination alternatives for managing
usabilit y dependencies can be classified using the design
dimensions listed in Table 1.

Design Dimension Design Alternatives
Who is responsible
for ensuring
usability?

- Designer (Standardization)
- Producers
- Consumers
- Both producers and consumers
 (use intermediate format)
- Third party

When are usability
requirements fixed?

- At design-time
- At run-time (format negotiation
might take place)

Table 1: Design dimensions of usability
coordination protocols.

Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97), June
3-5, 1997, Pittsburgh, PA.

Table 2: Design dimensions of accessibility coordination protocols.

Table 3: Examples of transport protocols for data resources.

Accessibilit y Dependencies. Accessibilit y
dependencies specify that a resource must be accessible
to a user before it can be used. Since users are software
activities, accessibilit y specifies more accurately that a
resource must be accessible to the process that executes
a user activity before it can be used. Important
parameters in specifying accessibilit y dependencies are
the number of producers, the number of users, and the
resource kind.

There are two broad alternatives for making
resources accessible to their users (Table 2):

• Place producers and users “close together”
• Transport resources from producers to users

Depending on the type of resource being transferred,
either or both alternatives might be needed. Placing
producer and user activities “close” to one another
generally decreases the cost of transporting the resource.
Combinations of placing activities and transporting
resources should be considered in situations where the
cost of placing the activities is lower than the
corresponding gain in the cost of transporting the
resource.

Prerequisite Dependencies. A fundamental
requirement in every resource flow is that a resource

must be produced before it can be used. This is captured
by including a prerequisite dependency in the
decomposition of every flow dependency.

Prerequisite dependencies can be further classified
according to:

• the number of precedent activities
• the number of consequent activities
• the relationship (and/or) among the precedent
activities: In And-prerequisites, all activities in the
precedent set must occur before activities in the
consequent set can begin execution. By contrast, in
Or-prerequisites, occurrence of at least one activity
in the precedent set satisfies the prerequisite
requirement.

Table 4 shows four generic processes for managing
prerequisite dependencies. Each generic process can be
further specialized according to a number of design
dimensions specific to the process. For example, peer
synchronization can be specialized according to the type
of event used for synchronization. Table 5 contains a
partial li st of events. For each event, different execution
environments provide different sets of corresponding
system calls, providing yet another level of protocol
specialization.

Principal design alternatives First-level of specialization Second-level of specialization

Place producers and
consumers “ close together”

• Place at design-time

• Place at run-time

- Package in same sequential module
- Package in same executable
- Assign to same processor
- Assign to nearby processors

- Code is accessible to all processors
- Physical code transportation required

Transport resource Actual protocols depend on resource kind (see Table 3)

Producers-Consumers Generic Mechanism Examples
one-one • Point-to-point channels

• Pipes

- OCCAM channels [8]
- UNIX sockets

- UNIX pipes
one-many • Broadcast Calls -ISIS Multicast [2]
many-one • Asynchronous Calls

• Synchronous Calls

- Asynchronous message passing

- Procedure calls
- RPC
- MS Windows DDE

many-many • Broadcast Calls - ISIS Multicast [2]

Accepted to the Fifth International Symposium on Assessment of Software Tools and Technologies (SAST97), June
3-5, 1997, Pittsburgh, PA.

Table 4: Generic processes for managing prerequisite dependencies.

Event type Generate Detect Reset
Semaphore Signal Semaphore (V) Wait on Semaphore (P) Reset Semaphore
File Creation Create File Test File Existence Delete File
File
Modification

Write File Compare file modification time
with stored modification time

Set stored modification time to
file modification time

Process Creation Create Process Test Process Existence Kill Process

Table 5: Examples of synchronizing events.

2.2.3 Designing Interconnection Protocols

This section will provide an example of how the
framework can be used to guide the design of
interconnection protocols among software components.
Because only a small subset of the taxonomy is
presented in this paper, the example will also by
necessity be very simple.

Suppose we would like to connect two existing
pieces of code: A C program providing a graphical
interface that repeatedly asks the user for part numbers,
and a Visual Basic program which queries a database
and displays descriptions of the corresponding parts.
The C program returns integer part numbers while the
Visual Basic program expects strings. Figure 2 shows
the components and their interconnection relationship,
in this case a simple data flow.

Producer Push
A BControl Flow

As soon as the precedent completes, it invokes the
consequent by explicitly passing control to it.

Consumer Pull Same Thread

A

B

Call AControl Flow

Control Flow

Before it begins execution, the consequent
synchronously calls the precedent.

Peer
Synchronization A B

Generate
Event

Detect
Event

Both precedent and consequent are executed by
independent threads of control and synchronize
themselves using shared events.

Controlled
Hierarchy C

A

Control Flow

B

Control Flow

A third party controls the invocation of both the
precedent and the consequent

Select Part
Numbers

Data Flow
(Part Number)

Display Part
Descript ion

Figure 2: A simple software system.

According to our framework, in order to interconnect
the two components, we need to design a coordination
protocol for the data flow dependency. Following our

generic model for flows, this means that we have to
design protocols for managing usabilit y, accessibilit y,
and prerequisite dependencies.

To manage usabilit y, we elect that the producer will
be responsible for making the data usable to the
consumer (see Table 1). In this example, this will
require the addition of code at the C component for
converting data from integers to strings.

Conver t In teger to
Str ing

Send da ta us ing
D D E

Ini t ia l ize DDE
connec t ion
(cl ient s ide)

In i t ia l ize DDE
connec t ion

(server s ide)

DDE hand le r
wrapper

Manage Usab i l i t y by Conver t ing Data to Consumer 's Format

Manage Access ib i l i t y by Transpor t ing Data us ing DDE

Prerequis i te Prerequisite

Select Par t
N u m b e r s

Disp lay Par t
Descr ip t ion

Manage Da ta F low

Figure 3: One protocol for managing the data flow dependency of Figure 2.

Convert Integer to
Str ing

Wr i te Shared
Memory

S igna l Semaphore Wai t Semaphore

Read Shared
Memory

Manage Usabi l i ty by Conver t ing Data f rom Producer 's Format

Manage Access ib i l i ty by Transpor t ing Data us ing Shared Memory

Select Part
Numbers

Display Part
Descr ip t ion

Manage Data F low

Rese t Semaphore

Prerequis i te

Manage Prerequis i te by Semaphore Synchron izat ion

Figure 4: An alternative protocol for managing the data flow dependency of Figure 2.

C module:

DDE_Init(& cli_id);
…
n = Select_Part();
s = itos(n);
DDE_Send(cli_id, s);
…

Visual Basic Module:
…
DDE_Init DDE_handler
…

Sub DDE_handler(s)
…
 Display_Part s
…
End Sub

C module:

Reset(sema);
…
n = Select_Part();
Write_Mem(loc, n);
Signal(sema);
…

Visual Basic Module:

…
Wait sema
Read_Mem loc, n
s = CStr(n)
Display_Part s
…

To manage accessibilit y we first preclude the
possibilit y of integrating the two components in the
same executable, because they are written in different
languages. We therefore have to transport the data from
producer to consumer. Our framework provides a set of
possibilities for doing this:

One possibilit y would be to use an RPC protocol to
transmit the data from producer to consumer. DDE
(Dynamic Date Exchange) is one such protocol
supported by Microsoft Windows. The advantage of
such a protocol is that it explicitly passes control from
producer to consumer, thus managing the prerequisite
dependency as well . The resulting protocol is depicted
in Figure 3. In this protocol, the C component acts as a
client, while the Visual Basic component is wrapped
inside a handler for a DDE call and acts as a server.

Another possibilit y would be to use a shared memory
location or a shared file, whose filename is fixed in
advance and known to both parties. This solution would
require us to address the prerequisite relationship
separately: Make sure that the Visual Basic program
only reads the next part number after it has been written
by the C program. We select a peer synchronization
mechanism specialized to use semaphores as the
synchronization event. Finally, as shared memory
locations are best for storing numbers, conversion from
integers to strings is done at the consumer side. Our
choices result in the protocol depicted in Figure 4.
Notice that, in this protocol, the two components are
eventually wrapped in two executables which run
independently and synchronize implicitly1.

In conclusion, our framework can not only guide the
design of interconnection protocols in a systematic way,
but also point out the range of alternatives available to
the designer at each step.

3. The SYNTHESIS Application Development
Environment

3.1 Overview

The coordination perspective on software design
introduced in the previous section has been reduced to
practice by building SYNTHESIS, an application
development environment based on its principles.
SYNTHESIS is particularly well suited for component-

1 The protocol for managing prerequisite dependencies shown in
Figure 3 allows more than one part numbers to be generated before
one of them is displayed. In this application such behavior would
most likely not be acceptable. Reference [3] contains a taxonomy of
different variations of prerequisite dependencies and corresponding
coordination protocols that would give a full y satisfactory solution to
this problem.

based software development. This section is devoted to
a very brief description of the SYNTHESIS system. A
detailed description can be found in [3].

SYNTHESIS consists of three elements:

• SYNOPSIS, a software architecture description
language

• an on-line design handbook of dependencies and
associated coordination protocols

• a design assistant which generates executable
applications by successive specializations of their
SYNOPSIS description

SYNOPSIS: An Architecture Description Language.
SYNOPSIS supports graphical descriptions of software
application architectures at both the specification and
the implementation level. The language provides
separate language entities for representing software
activities and dependencies. It also supports the
mechanism of entity specialization. Specialization
allows new entities (activities and dependencies) to be
defined as variations of other existing entities.
Specialized entities inherit the decomposition and
attributes of their parents and can differentiate
themselves by modifying any of those elements.
Specialization enables the incremental generation of
new designs from existing ones, as well as the
organization of related designs in concise hierarchies.
Finally, it enables the representation of reusable
software architectures at various levels of abstraction
(from very generic to very specific).

A Design Handbook of Software Interconnection. A
prototype version of a handbook of common software
interdependencies and coordination protocols has been
developed. The handbook is an on-line version of our
taxonomy of dependencies and coordination processes.
The design spaces of our framework have been
implemented by hierarchies of increasingly specialized
SYNOPSIS entities. For example, Figure 5 shows a partial
hierarchy of increasingly specialized processes for
managing prerequisite dependencies. Each process
contained in the handbook contains attributes that enable
the system to automatically determine whether it is a
compatible candidate for managing a dependency
between a given set of components.

A Design Process for Generating Executable
Applications. SYNTHESIS supports a process for
generating executable systems by successive
specialization of their SYNOPSIS descriptions. The
process automates the reasoning we used in Section
2.2.3 to design a coordination protocol for the flow

dependency and integrate our two components into a
complete system. It can be summarized as follows:

1. Users describe their application using SYNOPSIS, as a
pattern of activities connected through dependencies.

2. The design assistant of SYNTHESIS scans the
application description and iteratively does the
following for each application element which is still
not specific enough for code generation to take place
(e.g. a dependency for which no coordination
protocol has been specified):
a) It searches the on-line design handbook for

compatible specializations.
b) It selects one of the compatible specializations

found, either automatically, or by asking the user.
If no compatible specialization can be found, it
asks the user to provide one.

c) It replaces the generic application element with
the selected specialization (e.g. it replaces the
above dependency with a compatible
coordination protocol for managing it) and
recursively applies the same process to all
elements in the decomposition of this element.

3. After all application elements have been replaced by
implementable specializations, the design assistant
integrates them into a set of modules in one or more
languages and generates an executable application
out of the collection.

The above design process minimizes the manual
effort required to integrate software components into
new systems. Users only need to participate in the
specialization process by making the final selection
when more than one compatible specializations have
been found. In the rare cases when no compatible
specialization can be found, users need to provide the
code for such a specialization. Specializations thus
provided become a permanent part of the repository.

3.2 Using Synthesis to Facilitate Component-
Based Software Development

We have tested the capabiliti es of SYNTHESIS by
using it to build a set of applications by integrating
independently written pieces of software. Each
experiment consisted in:

• describing a test application as a SYNOPSIS

diagram of activities and dependencies
• selecting a set of pre-existing components

exhibiting various mismatches to implement activities
• using the design process outlined above to semi-

automatically manage dependencies and integrate the
selected components into an executable system

• exploring alternative executable implementations
based on the same set of components

The results of our experiments were very
encouraging. Overall , we used SYNTHESIS to build 4 test
applications. Each application was integrated in at least
two different ways. For example, for one application we
built one implementation where components were
organized around client/server interactions, and a
second where the same components were organized
around peer-to-peer interactions. This resulted in a total
of 14 different implementations. SYNTHESIS was able to
build all 14 implementations, typically generating
between 30-200 lines of additional glue code in each
case in order to manage interdependencies and integrate
the components. In only 2 cases, users had to manually
write 16 lines of code (each time), to implement two
data conversion routines that were missing from the
design handbook. Reference [3] contains a detailed
description of our experiments.

4. Related Work

4.1 The Process Handbook Project

The work reported in this paper grew out of the
Process Handbook project at MIT’s Center for
Coordination Science [4, 11]. The Process Handbook
project applies the ideas of coordination theory to the
representation and design of business processes. The
goal of the Process Handbook project is to provide a
firmer theoretical and empirical foundation for such
tasks as enterprise modeling, enterprise integration, and
process re-engineering. The project includes (1)
collecting examples of how different organizations
perform similar processes, and (2) representing these
examples in an on-line “Process Handbook” which
includes the relative advantages of the alternatives.
SYNOPSIS has borrowed the ideas of separating activities
from dependencies and the notion of entity

Prerequisite
Dependency

Event
Synchronization

Use
Semaphore
Signaling

Create File
upon

Termination

Semaphore
Signaling in

UNIX

Semaphore
Signaling in

OS/2

Increas ing ly spec ia l ized Coord inat ion Processes

Precedent
Calls

Consequent

Generic
Process Type of Event

Execution
Environment

DESIGN
DIMENSION:

GENERIC EXECUTABLE

Manage

Figure 5: A hierarchy of increasingly
specialized coordination protocols for
managing prerequisite dependencies.

specialization from the Process Handbook. It is
especially concerned with (1) refining the process
representation so that it can describe software
applications at a level precise enough for code
generation to take place, and (2) populating repositories
of dependencies and coordination protocols for the
specialized domain of software systems.

4.2 Architecture Description Languages

Architecture Description Languages (ADLs) provide
support for representing the high-level structure of
software systems in terms of their components and their
interconnections [9, 14]. They are an evolution of
Module Interconnection Languages (MIL), first
proposed in the ‘70s [5]. Most ADLs provide separate
abstractions for representing components and their
interconnections. SYNOPSIS shares many of the goals and
principles of ADLs. However, whereas previously
proposed architectural languages only provide support
for implementation-level connector abstractions (such as
a pipe, or a client/server protocol), SYNOPSIS is the first
language which also supports specification-level
abstractions for encoding interconnection relationships
(dependencies). Furthermore, apart from introducing a
new architectural language, this work proposes a more
general perspective on designing systems which also
includes the development of design handbooks for
activities and dependencies as well as a design process
for generating executable systems by successive
specializations of their architectural descriptions. The
project that comes closest to our work is UniCon [15].

4.3 CASE Tools and Software Design Assistants

A number of research tools attempt to facilit ate the
design and development of software systems by
providing graphical, architectural views of systems and
automated assistants which guide users through the
design process. STILE [16] provides good support for
graphical component-based design, but does not provide
particular support for distribution or for managing
component mismatches. The Software Architect’s
Assistant [10] is a visual environment for constructing
distributed applications. Aesop [6] exploits the notion of
architectural style to assist users in constraining their
design alternatives and verifying the correctness of their
designs.

Broadly speaking, SYNTHESIS also provides a
graphical architecture description language and a design
assistant for generating executable applications.
However, the specific models (activities, dependencies,
and coordination processes), relationships
(decomposition, specialization) and design operations
(replace dependencies with compatible coordination
processes) supported by SYNTHESIS are different from

the above systems and specifically geared to facilit ate
the integration of heterogeneous, multil anguage, and
possibly incompatible software components. It will be
interesting to see how good ideas from various software
design assistants can be constructively combined.

4.4 Component Frameworks

Component frameworks such as OLE, CORBA,
OpenDoc, etc. [1] and our coordination perspective
were both motivated by the complexity of managing
component interdependencies. However, the two
approaches represent very different philosophies.
Component frameworks enable the interoperation of
independently developed components by limiting the
kinds of allowed relationships and by providing a
standardized infrastructure for managing them. Only
components explicitly written for a framework can
interoperate with one another.

Our coordination perspective, in contrast, is based on
the belief that the identification and management of
software dependencies should be elevated to a design
problem in its own right. Therefore, dependencies
should not only be explicitly represented as distinct
entities, but furthermore, when deciding on a managing
protocol, the full range of possibiliti es should be
considered with the help of design handbooks.
Components in SYNOPSIS architectures need not adhere
to any standard and can have arbitrary interfaces.
Provided that the right coordination protocol exists in its
repository, SYNTHESIS will be able to interconnect them.
Furthermore, SYNTHESIS is able to suggest several
alternative ways of managing an interconnection
relationship and thus possibly generate more eff icient
implementations. Finally, open interconnection
protocols defined in specific component frameworks can
be incorporated into SYNTHESIS repositories as one, out
of many, alternative ways of managing the underlying
dependency relationships.

5. Conclusions and Future Directions

This work was motivated by the increasing variety
and complexity of interdependencies among components
of large software systems. It has observed that most
current programming languages and tools do not provide
adequate support for identifying and representing such
dependencies, while the knowledge of managing them
has not yet been systematically codified.

The initial results of this research provide positive
evidence for supporting the claim that software
interconnection can usefully be treated as a design
problem in its own right, orthogonal to the specification
and implementation of the core functional pieces of an

application. More specifically, software interconnection
relationships and coordination protocols for managing
them can be usefully represented as independent entities,
separate from the interdependent components.
Furthermore, they can be systematically organized in a
design handbook. Such a handbook can assist, or even
automate the process of integrating a set of
independently developed components into a new
application.
 Our experience with SYNTHESIS, a prototype
application development environment based on these
principles has demonstrated both the feasibilit y and the
practical usefulness of this approach. Nevertheless, we
view the work reported in this paper as only the
beginning of an ongoing effort to develop better
methodologies and tools for supporting component-
based software development. Some areas we plan to
address in the immediate future include:

• Classify composite dependency patterns. Our
current taxonomy includes relatively low-level
dependency types, such as flows and prerequisites. In
a sense, our taxonomy defines a vocabulary of
software interconnection relationships. A particularly
promising path of research seems to be the
classification of more complex dependency types as
patterns of more elementary dependencies.

• Develop coordination process design rules. It
will be interesting to develop design rules that help
automate the selection step by ranking candidate
processes according to various evaluation criteria such
as their response time, their reliabilit y, and their
overall fit with the rest of the application. For
example, when managing a data flow dependency, one
possible design heuristic would be to use direct
transfer of control (e.g. remote procedure calls) when
the size of the data that flows is small , and to use a
separate carrier resource, such as a file, when the size
of the data is large.

• Develop guidelines for better reusable
components. The idea of separating the design of
component functionality from the design of
interconnection protocols has interesting implications
about the way reusable components should be
designed in the future. At best, components should
contain minimal assumptions about their
interconnection patterns with other components
embedded in them. More research is needed to
translate this abstract requirement to concrete design
guidelines.

References

1. Richard M. Adler. Emerging Standards for Component
Software. IEEE Computer, March 1995, pp. 68-77.

2. K.P. Birman, A. Schiper and P. Stephenson. Lightweight
Causal and Atomic Group Multicast, ACM Transactions
on Computing Systems, vol. 9, Aug. 1991, pp. 77-113.

3. Chrysanthos Dellarocas. A Coordination Perspective on
Software Architecture: Towards a Design Handbook for
Integrating Software Components (Ph.D. Thesis). MIT
Center for Coordination Science Working Paper #193,
February 1996.

4. C. Dellarocas, J. Lee, T. W. Malone, K. Crowston and B.
Pentland. Using a Process Handbook to Design
Organizational Processes. In Proceedings, AAAI Spring
Symposium on Computational Organization Design,
March 21-23, 1994, Stanford, CA, pp. 50-56.

5. Frank DeRemer and Hans H. Kron. Programming-in-the-
Large Versus Programming-in-the-Small. IEEE
Transactions on Software Engineering, Vol.SE-2, No.2,
June 1976, pp.80-86.

6. D. Garlan, R. Allen and J. Ockerbloom. Exploiting Style
in Architectural Design Environments. Proceedings, ACM
SIGSOFT ’94 Symposium on Foundations of Software
Engineering, December 1994.

7. D. Garlan, R. Allen and J. Ockerbloom. Architectural
Mismatch or Why it's hard to build systems out of existing
parts. In Proceedings, 17th International Conference on
Software Engineering, Seattle WA, April 1995.

8. Inmos Ltd. Occam Programming Manual. Prentice-Hall,
Englewood Cliffs, NJ, 1984.

9. Paul Kogut and Paul Clements. Features of Architecture
Representation Languages. Carnegie Mellon University
Technical Report CMU/SEI. Number to be assigned. Draft
of December 1994.

10. J. Kramer, J. Magee, K. Ng and M. Sloman. The System
Architect's Assistant for Design and Construction of
Distributed Systems. Proceedings of 4th IEEE Workshop
on Future Trends of Distributed Computing Systems, Sept.
1993, pp. 284-290.

11. T.W. Malone, K. Crowston, J. Lee and B. Pentland. Tools
for Inventing Organizations: Toward a Handbook of
Organizational Processes, In Proceedings, 2nd IEEE
Workshop on Enabling Tech. Infrastructure for
Collaborative Enterprises, April 20-22, 1993.

12. Thomas W. Malone and Kevin Crowston. The
Interdisciplinary Study of Coordination. ACM Computing
Surveys, Vol. 26, No. 1, March 1994, pp. 87-119.

13. Mary Shaw. Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deserve First-
Class Status. Carnegie Mellon University, Technical
Report CMU-CS-94-107. January 1994.

14. Mary Shaw and David Garlan. Characteristics of Higher-
level Languages for Software Architecture. Technical
Report CMU-CS-94-210. Also appears as CMU/SEI-94-
TR-23, ESC-TR-94-023.

15. Mary Shaw, Robert DeLine, and Daniel Klein.
Abstractions for Software Architecture and Tools to
Support Them. IEEE Transactions of Software
Engineering 21, 4, April 1995, pp. 314-335.

16. M.P. Stovsky and B.W. Weide. Building Interprocess
Communication Models Using STILE. Proceedings, 21st

Annual Hawaii Int. Conf. On System Sciences, 1988,
Vol.2, pp.639-647.

