
���������	
��
�������
��
�����
�	���
�������

��
�����
��
������
�������
��
���	�

���������	
����

������������������������������

������������������������

����� ��!������"#$��%#&&"��'('$)�

*����������
�����

+$),$)'"-,(,�

���
���.����
������

/�����
��01����

������������������������������

������������������������

����� ��!������"#$��2#&')��'('$)�

*����������
�����

+$),$)'"%2)'�

���0
���.����
������

��� �����0� ��

������������������������������

������������������������

����� ��!������"#$��2#"'%��'('$)�

*����������
�����

+$),$)'"-,,&�

� ��0� �.����
������

�

�

ABSTRACT
The problem of calculating a degree of reputation for agents
acting as assistants to the members of an electronic community is
discussed and a solution presented. Usual reputation mechanisms
rely on feedback after interaction between agents. An alternative
way to establish reputation is related with the position of each
member of a community within the corresponding social network.
We propose a method based on this idea, which is also used by
well-known ranking algorithms, discuss its properties as well as
experimental results and compare them to other reputation
mechanisms for electronic communities supported by agents. The
method proposed uses only local information in order to extract
reputation and it is able to adapt automatically to the topology of
the network or graph.

Categories and Subject Descriptors
I.2.11 Distributed Artificial Intelligence---Multiagent systems,
G.3. Probability and Statistics---Markov processes, Stochastic
processes, I.2.8 Problem Solving, Control Methods, and Search
(F.2.2)---Graph and tree search strategies, and G.2.2 Graph
Theory (F.2.2)---Graph algorithms.

General Terms
Algorithms, Measurement, Human Factors.

Keywords
Social Networks, Electronic Communities, Multi agent Systems,
Reputation, Trust, Reputation mechanisms, Ranking algorithms,
Web Intelligence.

1. INTRODUCTION
Electronic communities evolve around a given area of activity or
topic of interest. The basis for their sustainability and persistence

over time is the interchange of services between community
members. Members of electronic communities can be people or
agents acting on behalf of the former ones. Typical interchanges
include commercial transactions, documentary information and
knowledge exchanges, responses to answers, advice, suggestions,
help, reference to further information, etc. As well-known
examples of each type of communities one can cite e-Bay [8],
Firefly [11], or Experts’ Exchange [9]. We focus our discussion
on communities created for knowledge management and
organizational learning purposes, specifically those ones
supported by a multi agent system where each agent represents a
single user [20,28]. Given that such communities thrive through
service interchange or mutual support, it is crucial for each
member to be aware of the trust that could be given to other
members as well as their reputation. These two characteristics are
inherently dynamic and some schemas have been devised in order
to keep track of them for several types of communities. Usually
they are calculated by means of some type of feedback mechanism
that require involving actions on the part of the human user or the
corresponding agent. This approach has some drawbacks that we
try to overcome in this paper by means of an alternative approach
based on the analysis of the location of each user within his
community’s social network [26]. In section two, the
characteristics of multi agent systems for community support are
presented together with currently used mechanisms for trust and
reputation maintenance. A characterization of social networks is
given in section three that also analyzes their properties. Section
four describes a new algorithm that extracts reputation mechanism
for this type of multi agent systems. Section five presents a set of
experiments on a concrete knowledge sharing community and
Section six closes by discussing results and pointing to further
work.

2. MAS FOR COMMUNITY SUPPORT
AND THEIR REPUTATION MECHANISMS
Knowledge management in collaborative environments involves
the interchange of information and knowledge among members of
a community. The knowledge management cycle involves
detecting when new knowledge is generated, who may be
interested about it and delivering this knowledge to that people.
Several approaches have been proposed in order to develop
systems that detect each user’s knowledge needs [5]. Usually they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ‘02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007…$5.00.

467

are based on measuring the similarity in the competences of
community members. This requires the maintenance of some type
of user profile. Several multi agent systems have been developed
to serve these purposes. Their agents act on behalf of community
members, maintaining profiles or routing questions to other
members’ agents as, for example, in MARS [28] or the i2CAT
Collaboratory [22, 23]. Communities based on user preferences
also share some treats with these systems. For example, agents in
Firefly [11] or Yenta [12] use profile similarity as a criterion for
finding possible partners, which is at the basis for locating
expertise within a community [24]. This same idea is used by
recommender systems based on collaborative filtering [19]. In the
case of knowledge sharing communities formed by a set of people
with expertise in a given domain not only it is important that
agents be able to detect which people (represented by other
agents) possess the adequate expertise for solving the problem at
hand but it is also crucial to assess to which extent some of the
members are recognized as experts by their colleagues in the
community. The trust and reputation of experts has been typically
assessed as a function of the quality of their response to
knowledge requests coming from other members in the
community. This is the schema used in some organizational
learning systems as, for example, Answer Garden [1] and some
commercial knowledge communities [4,9,10], see [13] for a
discussion of the different ratings that can be obtained by
analyzing response quality. All these systems rely on feedback (in
the form of a rating) from the person receiving the response to a
previous demand. By combining these ratings a numerical value
for each expert’s reputation can be calculated. A reputation
measure gives an idea of the confidence one can have on the
quality of an expert’s responses and serves as a basis for guiding
the search for experts. The disadvantage of this type of reputation
mechanism is that it needs the explicit and frequent involvement
of users that issue ratings. This implies that a good reputation
calculation and maintenance depends critically on the
involvement of users and continued contribution of ratings.
Usually an insufficient number of users or a low participation are
at the root of bad collaborative filtering performance. Continuous
requirements for feedback also create fatigue in users who tend to
end up not issuing ratings at all. See a discussion about this in
[14,19]. So, alternative, less intrusive and less demanding in terms
of involvement methods are clearly of interest. This of course,
raises the question of how can reputation be measured in the
absence of any user feedback for expert’s responses. This goal is
also important in devising reputation mechanisms for other types
of agent systems. See [21] for a general discussion of trust and
reputation in MAS and [29] for a similar discussion in a more
restricted type of community dealing with e-commerce. We
propose a system that tackles these problems by using the social
network of the community.

2.1 Social Networks
A social network [26] is a representation of the relationships
existing within a community. Even within the same community
several types of social network can be built depending on the
social relationship taken into account: kinship, acquaintanceship,
friendship, mutual support, cooperation, and similarity are typical
criteria used in establishing the social relationship components of
a community. The corresponding social networks are represented
as graphs. The construction of social networks for electronic

communities helps in mapping the relationships among people
that may not be aware of being related, given the special type of
detached interaction peculiar to online communities. The basis for
reconstructing these social interactions are the usage of the tools
that give support to the online community which involve to some
degree public information about each member [7]. See
Referralweb for a multiagent system supporting that type of
community mapping [15] and MARS [28] or NetExpert [20] for
multi agent systems supporting knowledge sharing communities
on the basis of the corresponding social network structure.

2.2 Social Network topology and reputation
The location of a given member of a community within a social
network can be used to infer some properties about his or her
degree of expertise, i.e., his or her reputation. Experts who are
well-known and highly regarded by most other members of the
community tend to be easily identified as highly connected nodes
in the social network graph of their community [2,16,17]. This
relation information could be a basis for a reputation mechanism
used by users’ assistant agents instead of having to resort to
explicit ratings issued by each user. We describe in the following
how this approach has been tested in the context of a multi agent
system that gives support to a knowledge sharing community.

3. SOCIAL NETWORKS IN A
COLLABORATORY
The Collaboratory is a multi agent system supporting a research
community. For a description detailed description, see [22,23].
The users of this system are currently the researchers involved in
the Internet2 project in Catalonia, i2CAT (http://www.i2.-cat.net).
They share a document repository and use a set of collaborative
agents to obtain recommendations or for finding experts in a
given topic within the community. Central to these functionalities
is an agency that builds and maintains the social network of the
community [18,20]. The social network building agency uses
information located in he community members personal web
pages and other sources. This information can be complemented
with the knowledge contributed by users to the rest of the
Collaboratory as well as the knowledge they obtain from it. This
is done by resorting to several user profiles. Details of their
construction can be seen in [19]. For the purposes of the
experiments discussed in this paper the test community has been
extended to all members of the Software Department of the
Technical University of Catalonia (UPC).
Each type of community may need its particular sources of
information [26], for social network construction. Some of them
are:

• Personal web pages

• Reports or documents authorship

• Participation in a project

• Hierarchical structure in the community or organization.

• Sharing of physical resources.

• Sharing of virtual resources such as news group, forums, etc.

• Email traffic.

468

3.1 Building the Social Network
In order to build the social network for the present experiment it
was necessary to create knowledge and content models of users’
personal web pages. This was done by using WebMining, which is
an agent that builds generic models from web pages, see [18,20].
For simplicity purposes one can see that model as a set of terms
describing the knowledge contained in the personal pages. Once
these models are obtained for each member of the community the
Social Network is built by the RelationshipMaker agent by means
of a similarity function that takes into account the strength of
association between any two members in the community.
Members of the community appear as nodes in the social network
graph and the directed edges are calculated as follows.

The weight of a relationship is the sum of three factors:

∃email(a→b) is 1 when email address of member b exists in the
web pages of member a , 0 otherwise.

R(a,b) is the set of resources (files than can be reached through
the Web) that belong to member b and they have been found in
the personal web page of member a.

depth(∝,x) is the depth of the resource ∝ in the personal web page
of member x.

#name(a→b) returns the number of occurrences of the name of
member b within the personal web pages of member a. Extracting
the name of a member of the community from the personal web
page of another one is not trivial. Web pages are plain text
information with html tags, there is no semantic information about
names, thus a set of rules has to be used to disambiguate names,
see [18] for the details.
A second, undirected graphs, results from this step also. Their
weight are calculated as follows:

3.2 Social Network properties

The social network generated using the proposed heuristics has
the typical properties of the social networks. Figure 1 shows a
partial view of the UPC’s undirected social network.

Figure 1. Fragment of Social Network

Table 1 shows the most important characteristics of the undirected
Social Network. To formalize the notion of a small world, Watts
and Strogatz [27] define the clustering coefficient C, and the
characteristic path length L. We take the diameter of a graph as
well D. [3] Clustering coefficient is a real in the interval [0..1].

 Social Network Random Network

#nodes 139 139

#edges 394 394

C 0.7045 0.3774

L 3.6572 3.016

D 9 6

Table 1: Social Networks characteristics

Watts and Strogatz define a small world graph as one is which
L≥Lrand, or L≈Lrand, and C>>Crand where Lrand and Crand are the
characteristic path length and clustering coefficient of a random
graph with the same number of nodes and edges. It is accepted
that a small world graph should has (C/Crand)/(L/Lrand) > 1, our
Social Network has (C/Crand)/(L/Lrand) = 1.5394.
The distribution of the node degree of the UPC Social Network
follows clearly an exponential distribution, few nodes with very
high degree and many with low degree. That confirms that the
social Network is a small world in the Watts and Strogatz sense.
In figure 2 the node degree histogram is shown in a log scale.
Because of the few nodes that the UPC Social Network has, the
cumulated frequency has been used instead of the frequency.
Thus, the fluctuation produced by the lack of points can be
reduced.

)()(
)()(
bawbaw

bawbaw

namelink

email

→+→
+→=→

(1)

)()(baemailbawemail →∃=→ (2)

∑
∈∀ +

=→
),(),(),(

2)(
baR

link bdepthadepth
baw

α αα
(3)

∑
→≤

=

=→
)(#

0
2

1
2
1)(

banamei

i
name i

baw (4)

)()()(abwbawbaw →+→=↔ (5)

469

Figure 2. Node degree Histogram
Social network properties such as “smallworldliness” should be
considered in order to improve knowledge extraction from the
network and expertise location, because by exploiting these
properties more efficient search [25] and propagation algorithms
can be used, instead of traditional generic graph algorithms.

4. USING SOCIAL NETWORK METRICS
FOR REPUTATION MEASUREMENT
NodeRanking is our proposal for creating a ranking of reputation
ratings of community members by means of the corresponding
Social Network.
The rating that NodeRanking creates is based on the idea that each
node on the graph has an associated degree of authority that can
be seen as an importance measure. Initially, all nodes are assumed
to have the same authority. After running NodeRanking, the
resulting authority measure is used to infer the reputation of a
node within the graph, that is, the reputation of a member within
his community.
Authority of a node, a, is calculated as a function of the total
measure of authority present in the network and the authority of
the nodes pointing to a. If a node is not referred by any other node
in the network, it is assigned a default authority value. Authority
values are positive values.
The algorithm for authority calculation is inspired in the ranking
algorithms for web pages based on web topology [16,17]. The
idea is to apply a similar reasoning about link topology in web
pages to the topology of a Social Network, i.e., the link topology
of a directed graph. In a directed graph the edges have a direction,
the out-edges of a node are the edges that start in this node, the
out-nodes are the nodes that can be reached through out-edges.
The main idea of the NodeRanking algorithm is that each node
has an authority and a part of this authority is propagated to the
out-nodes via out-edges.

Figure 3. Flow of authority in NodeRanking

The authority of a node depends on the authority of its in-nodes.
The authority of one of the out-nodes in figure 3 node depends in
part on the authority of this node. Cycles in the graph can produce
critical deadlocks in the calculations. The NodeRanking algorithm
overcomes these problems and insures convergence.

4.1 The NodeRanking Algorithm
NodeRanking follows essentially the random walker strategy to
explore the graph. It starts in a randomly selected node, and
proceeds by selecting one of the nodes that can be reached
through out-edges.

Figure 4. NodeRanking algorithm
We have used some functions that require additional explanation.
getNode (): returns a randomly chosen node of the graph. The
probability is uniform.
getNextNode(node x): returns one of the out-neighbors nodes of
node x. Each node has a set, that can be empty, of out-edges that
points to other nodes. This function can return a null node to stop
the path of the random walker by introducing some elements of
randomness. When getNextNode() returns a null node, in fact, the
path is broken. There are two cases where the path is broken. The
first one is when the algorithm arrives at a node that has been
already visited in the previous k steps. The algorithm keeps a
window of k elements and breaks the path if a new node already
exists in the window. The second case is when a certain value of
jumping probability is reached. In effect, the random walker
evaluates the jumping probability whenever it reaches a node.
This probability is a function of the connectivity of the node. The
walker skips the node with a probability Prjump (a).

do
 n ← getNode(v)
 do
 passAuthority(n)
 nnew ← getNextNode(n)
 n ← nnew
 while (∃ nnew)
while (¬ converge())

' % "' "% &' &% $'
"'

'

"'
"

"'
&

"'
$

������������������3��&4'�,-$

5� �� �0���������0���

5� �� �0���

6
�

�

��
��

��
��
7

�
�
�
�

470

Nodes with fewer out-edges have a greater probability of breaking
the path. This could be seen as a walker that gets bored because of
the reduce range of choices. getNextNode() returns the next node
b to be visited from a. This node is selected with a probability that
is calculated as a function of the weight of the edge between a and
b, the corresponding density probability function is shown below.

Where w (a -> b) is the weight of the link connecting a and b.
passAuthority(node x): this function assigns part of the authority
of node x to all the nodes that are pointed by x. The next equation
shows the change of authority between a node x and a node y.

Where auth(y) is the authority of the node y and Fy is a factor to
maintain the value of authority within a limited range of values.
Without this factor, values calculated with equation 8 would tend
to infinity because the authority of a node gets higher and higher
as the method proceeds. F controls the growth of authority and
also eliminates the effects of randomness introduced by the
asynchronicity in the authority updating. Each node has its own F
factor that remembers the state of the total authority value of the
graph the last time that the node was involved in a passAuthority
function call. These factors depend on the authority value of all
the nodes in the graph at the time that the authority of node y was
updated. The factors of more frequently visited nodes grow faster
than the values of the less visited ones. The growth of these
factor’s values is monotonously increasing. Thus, we can insure
convergence towards a finite value. Without this factor, nodes that
had been last in the random selection would have an advantage
over the other ones, because the graph is accumulating more and
more authority as the algorithm proceeds. Factor F is initialized
for every node as the sum of the authority of all nodes in the
graph. The initial authority of a node has to be positive, and factor
F has to be bigger or equal than 1.
converge(): this function can be evaluated anytime, it’s a test on
all the nodes in the graph. Each node remembers its last increment
in authority. The increment in authority tends to 0 because of the
F factor, as can be seen in equation 8. The function converge()
tests the state of each node. If the increment is less than a given
threshold, ϕ, the node will be considered as stationary. When all
the nodes of the graph are stationary the algorithm ends. Actually
the convergence function does not test all the nodes because it
would not be very efficient. The event of becoming stationary is
notified by the nodes themselves.

4.2 Differences with Pagerank and HITS
HITS [16] and Pagerank [17] algorithms are the reference for web
page ranking algorithms. The second one is the core of the
ranking performed by the commercial Google search engine. They
are based on finding out the stationary state of a matrix, the
variance-covariance matrix in the case of HITS and the transition
probability matrix for Pagerank. In order to do this, the adjacency
matrix of the graph has to be known. Moreover, when the
principal eigenvector is calculated using the technique known as
“iterative product” the vector that contains the principal eigen
vector, has to be normalized frequently, so the whole vector has to
be known. HITS and Pagerank use global information of the
graph. That means that it is difficult to use directly these
algorithms to rank huge graphs. Let’s think, for example about a
not so big graph, let’s say a graph of 25000 nodes. Its adjacency
matrix will have 6.25*108 positions. Because of the authority
updating mechanism that Pagerank and HITS use, there is a
synchronization step in the process of authority transfer since the
state of all nodes has to be know in order to update the state of a
single one of them. On the contrary, our algorithm, NodeRanking,
uses only local information. Each node x only needs to know the
about nodes that it points to and these other ones have to be aware
of x’s convergence towards the stationary state. In order to
retrieve the results of the ranking, a centralization point is
required, but even in this process the communication proceeds
unidirectionally (from the nodes to the controller) so it is not
necessary at all to have information about the whole graph.
Pagerank and NodeRanking are almost identical in the underlying
idea, both of them follow the same random walker strategy.
Actually the transition probability matrix of a synchronous
version of NodeRanking can be defined as follows:

PJ
n

JM TT)11(111 −+= (9)

Where 1 is a vector of 1s, n is the number of nodes, P is the
adjacency matrix normalized by rows, J is the jumping probability
matrix defined as a 0 matrix where the diagonal contains the
jumping probability of a node, i.e. Jii contains node i jumping
probability (as defined in equation 6). The results obtained by
finding out the stationary state of the Markov chain defined by the
transition probability matrix M, i.e finding out the principal
eigenvector of the matrix MT, are equivalent to the results
obtained by the original NodeRanking algorithm. The advantage
of the original NodeRanking is that it is not necessary to know the
graph’s adjacency matrix as it happens in techniques based on
transition probability or variance-covariance matrices.
As it can be seen in equation 9, matrix J contains the jumping
probability of a node. Each node has a different jumping
probability, calculated by applying equation 6. So, the jumping
probability only depends on local information. The average
jumping probability depends on the distribution of the nodes’ out-
degrees. Thus NodeRanking is able to adapt dynamically to
graphs with different topologies because the jumping probability
depends only on the node’s out-edges. This is clearly in contrast
with Pagerank where the jumping probability is not adaptative,
and it is fixed to values in the [0.1..0.2] range, usually 0.15.

(7)

(8)

∑
−∈∀

→

→=→

)(
)(

)()(Pr

anodesout

choose

aw

bawba

α
α











 →
+=

y

choose

F
xauthyxyauthyauth)()(Pr)()(

(7)

1)(#
1)(Pr

+−
=

aedgesout
ajump (6)

471

5. EXPERIMENTS ABOUT RANKING AND
REPUTATION
In order to validate the obtained rankings as a correct reputation
measure they had to be compared against a real and accepted
measure of reputation. This test community being a research
community, a good way to establish a comparison was to resort to
citation index impact values for each one of the 34 members
calculated by an independent scientific publication ranking
agency. That is, citation indexes for each of the 34 randomly
selected members of the Software Department were compared
against the rating that NodeRaking yielded, RankNodeRanking, and
also against the ratings that Pagerank yielded. Citation indexes
are a clear indicator of reputation in scientific communities.
CiteSeer [6] was used as a source for citation index values. In
CiteSeer, the papers of each researcher can be retrieved together
with the corresponding number of citations and self-citations for
each of his or her papers. We have built two rankings for the
members of our test community. Rankcite, sorts researchers by
number of citations and Rankcite-self, sorts researchers by number
of citations without counting self-citations. These rankings can be
considered as reference rankings, the closest ones to real
reputation in the scientific community.
NodeRanking was applied to the social network of the
experimental community formed by the members of the UPC
Software Department. The parameters that have been used along
all the experiment are k=4 and ϕ=10-6. Afterwards, a fragment of
the community, 34 members, was selected randomly to become
the test set. The ranking obtained by means of NodeRanking was
called RankNodeRanking. The ranking obtained by NodeRanking was
compared against the results obtained by applying Pagerank with
the e=0.15 and also against the results of the HITS algorithm.
Pagerank and HITS work with no weighted graphs. Weighted
edges can be useful, if they are available, because the normalized
weight of an edge contributes with more information than the fact
that an edge exists or not. The UPC Social Network has weighted
edges, so two rankings instead of one were built for each
algorithm and one was calculated without taking the weights into
account. It was called RankPageRank or RankHitsAuthority The second
ranking, RankPageRank(w), was calculated by having weights into
account.
To compare the quality of the ratings obtained by NodeRanking,
Pagerank, HITS and the reference rankings built using Citeseer
the correlation coefficient between rankings was used as a
similarity measure.
Table 2 shows the correlation values between reference rankings
Rankcite, Rankcite-self, considered as the desired rankings, and the
rest. The ranking RankNodeRanking is the average of twenty
executions of the algorithm, the mean and the standard deviation
is given. That variability is due to the asynchronicity of the
authority transfer process within NodeRanking. Independently of
the reference ranking, the same order among the generated
rankings is obtained. RankNodeRanking values are always a little
better than RankPageRank and RankPageRank(w) values and these ones
are better than the RankHitsAuth(w) and RankHitsAuth. It is interesting to
remark that the rankings obtained by HITS algorithm are better if
the edges’ weights are taken into account. However, in any case,
the correlation is very strong. Correlation coefficient goes from [-
1..1], where 0 means that there is no correlation, the correlation
between two random rankings is close to 0. Rankings with a

correlation of 0.621 or 0.687 against the reference ranking can not
be considered perfect even though they are similar enough to be
interesting.

Correlation
Coefficient

Rankcite Rankcite-self

Rankcite 1.0 0.983
Rankcite-self 0.983 1.0
RankNodeRanking 0.687, s=8.6*10-4 0.621, s=0.011
RankPageRank(w) 0.535 0.486
RankPageRank 0.521 0.495
RankHitsAuth(w) 0.412 0.383
RankHitsAuth 0.342 0.323

Table 2. Correlation values between rankings

Figure 5 shows the correlation between Rankcite as a desired
ranking and the rest of rankings

' '�" '�& '�$ '�) '�% '�2 '�- '�('�, "

"

&

$

)

%

2

�����������������/�����������������

�����������

/
�
�
8
��
0
� 23�/����#�����9�4'�,($:

%3�/�� ����8��0

9����9�:4'�2(-�

�� ��9�:4(�2�#'):

)3�/��0����89�:�9�4'�%$%:

$3�/��0����8�9�4'�%&":

&3�/�
�������9�:�9�4'�)"&:

"3�/�
��������9�4'�$)&:

Figure 5. Correlation with Rankcite as reference

Figure 6 shows the correlation between Rankcite-self as a desired
ranking and all the rest.

' '�" '�& '�$ '�) '�% '�2 '�- '�('�, "

"

&

$

)

%

2

�����������������/����#�����������������

�����������

/
�
�
8
��
0
� 23�/�����9�4'�,($:

%3�/�� ����8��0

9����9�:4'�2&"�

�� ��9�:4'�'"":

)3�/��0����89�:�9�4'�)(2:

$3�/��0����8�9�4'�),%:

&3�/�
�������9�:�9�4'�$($:

"3�/�
��������9�4'�$&$:

Figure 6. Correlation with Rankcite-self as reference

472

As it can be observed, the rankings obtained by NodeRanking are
better than the ones obtained by Pagerank. Both algorithms
follow the same random walker strategy with the difference of the
authority updating mechanism, which is asynchronous in
NodeRanking and synchronous in Pagerank. So, the results
should be similar, the reason of the best performance of
NodeRanking may be due to its ability to adapt itself to the
graph’s topology.
In figure 2 the distribution of nodes out-edges degrees can be
observed. It follows an exponential distribution that is
characteristic of the graphs that are small worlds such as the
Social Network of our case of study is. The average jumping
probability can be calculated using this distribution that we call
dout-connectivity.

The average jumping probability of our case of study social
network is 0.5314. So NodeRanking with its dynamical
adjustment of the jumping probability is able to adapt to different
graph topologies. In contrast, Pagerank is not able to calculate
such good rankings for social networks nodes because of the
exponential distribution of the connectivity in the graphs. There is
a lot of nodes with no out-edges or with very few out-edges. So, a
jumping probability of 0.15 (the one used in Pagerank) is too
small and Pagerank falls into the rank sink problem. If Pagerank
were set to work with a jumping probability of 0.5414 the results
would be equivalent to the obtained by NodeRanking. This is to
be expected and perfectly coherent. However, the fact that
NodeRanking only uses local information is an advantage over
Pagerank in order to extract reputation and being more general
extracting ranks.

6. DISCUSSION AND FURTHER
RESEARCH
The values of the ratings calculated by the topological information
of a community’s social network has been used as a measure of
each member’s reputation within a community. A new algorithm
NodeRanking has been devised to obtain such measures. An
experiment has been performed on a real community and the
results compared against a well-known valid measure of
reputation for that type of communities. The results seem to
indicate that NodeRanking values are a good approximation of
reputation measures. The well known Pagerank and HITS
algorithms have been also used to find out the member’s
reputation, the Pagerank results has been slightly worse than the
results yielded by NodeRanking. It can be concluded that
NodeRanking builds good approximation of reputation. However
NodeRanking is able to assess the reputation only by using local
information. It is a distributed algorithm. NodeRanking does not
need to know the entire graph to operate which Pagerank does.
The proposed criterion for reputation measurement in a
collaborative multi agent system and the corresponding method
have as an advantage with respect to other ones [29] the fact that
it does not require to have users continuously and explicitly
issuing ratings, a method that is seen as a burden on users and
eventually a reason for poor performance of collaborative

systems. With our proposal a quite approximate reputation
ranking can be calculated a priori without the typical and
annoying feedback request used in collaborative systems.
Another advantage of NodeRanking is that the proposed method is
solely based on topological information, thus making complete
abstraction of any other information. On the other hand its success
hinges critically on the quality of fit between the social network
representation and the real community structure. In the case of the
social network of the Collaboratory it seems that the information
used to build the social network is well suited to research
communities.
Other multi agent system methods that use social networks either
do not use them for reputation measurement, as is the case of
Referralweb [15] or still rely exclusively on rating feedback from
users as Yu [28] does. This last one has only been tested on a
simulated community as opposed to the test we carried on a real
one (another example of this tests on simulated communities is
Zacharias and Maes [29]).
Further experimentation will be carried on with other types of
knowledge sharing communities in order to test the dependence
between the information used in building the social network and
the final quality of the reputation measurements obtained from it.
Finally, and as another interesting field, NodeRanking could be
tested as a generic and fully distributed algorithm to rank nodes of
any kind of graph, such as the Web. Following this line some
interesting results has been obtained applying NodeRanking to
web-like graphs. Rankings that are equivalent to the reference
ones, such as Pagerank and HITS, has been obtained using only
local information.

7. ACKNOWLEDGEMENTS
The research leading to these results have been partially supported
by the Catalan Autonomous Government DURSI project i2CAT.

8. REFERENCES
[1] Ackerman, M.S., and McDonald, D.W. Answer Garden 2:

Merging organizational memory with collaborative help. In
Computer Supported Cooperative Work, pages 97–105,
1996.

[2] Adamic, L.A., and Adar, E. Friends and neighbors on the
web, 2000.

[3] Adamic, L.A., The small world web. In S. Abiteboul and A.-
M. Vercoustre, editors, Proc. 3rd European Conf. Research
and Advanced Technology for Digital Libraries, ECDL,
number1696. Springer-Verlag, 1999.

[4] AskMe. Available on http://www.askme.com/.

[5] Borghoff, U.M. and Pareschi, R.(Eds.), Information
Technology Support for Knowledge Management Springer-
Verlag. Berlin.1998.

[6] CiteSeer. Available on http://www.citeseer.com/.

[7] Contractor, N.S., O’Keefe, B.J. and Jones, P.M. IKNOW:
Inquiring knowledge networks on the web. Computer
Software Dept., University of Illinois, 1997.

(10) ∑ −=
i

jumptyconnectivioutjump iid)(Pr)(Pr

473

[8] eBay. Available on http://www.ebay.com

[9] Experts Exchange. Available on http://www.experts-
exchange.com/.

[10] Exp.com. Available on http://www.exp.com/.

[11] Firefly. Available on http://www.firefly.net/.

[12] Foner, L. Yenta: A multi-agent, referral-based matchmaking
system, 1997.

[13] Garcia, R. Extensió col.laborativa del servei de localització
d’expertesa. Master’s thesis, Technical University of
Catalonia, 2001.

[14] Grasso, A. Mixing Cognitive and Collaborative Filtering.
Proceedings of the I3net Community of the Future
Conference. Sienna, Italy, October 1999.

[15] Kautz, H., Selman, B., and Shah, M. The hidden web. AI
Magazine, (18), 1997.

[16] Kleinberg, J. Authoritative sources in a hyperlinked
environment. Technical Report RJ 10076, IBM, May 1997.

[17] Page, L., Brin, S., R. Motwani, T. Winograd, The PageRank
citation ranking: Bringing order to the Web, submitted for
publication.

[18] Pujol, J.M. Netexpert: Localitzador d’expertesa. Master’s
thesis, Technical University of Catalonia, 2000.

[19] Sangüesa, R., Vázquez, A. and Vázquez, J. Ace: A
multiagent recommender system using mixed collaborative
and cognitive filtering. In Proceedings of the WARS 2000,
Workshop on Agent-Based Recommender Systems, 2000.

[20] Sangüesa, R. and Pujol, J.M. NetExpert: A multiagent
system for expertise location. Accepted to IJCAI’01
Workshop on Organizational Memories and Knowledge
Management, 2001.

[21] Schillo, M., Funk, P. and Rovatsos, M. Who can you Trust:
Dealing with Deception. In C. Castelfranchi, Y. Tan, R.
Falcone and B. S. Firozabadi (ed.), Proceedings of the
Workshop “Deception, Fraud and Trust in Agent Societies”
of the Autonomous Agents Conference, 1999.

[22] Vázquez, A., Vázquez, J., Barrio, I., Pujol, J. M. Pujol, and
Sangüesa, R. The collaboratory. Technical Report LSI-01-
22-R., Technical University of Catalonia, 2001.

[23] Vázquez, A., Barrio, I., Vázquez-Salceda, J., Pujol, J.M. and
Sangüesa, R. An agent-based Collaboratory. Accepted for
publication at ACAI’01, Advanced Course on Artificial
Intelligence, Prague, July 2001.

[24] Vivacqua, A.S. Agents for expertise location. In Proceedings
of the 1999 AAAI Spring Symposium on Intelligent Agents
in Cyberspace, 1999.

[25] Walsh, T. Search in a small world. In Proceedings of the
16th International Joint Conference on AI (IJCAI-99-Vol2),
pages 1172--1177, S.F., July.

[26] Wasserman, S. and Glaskiewics, J. Advances in Social
Networks Analysis. Sage Publications, 1994.

[27] Watts, D.J., and Strogatz, S.H., Collective dynamics of
‘small-world’ networks. Nature, (393), 1998.

[28] Yu, B. and Singh, M.P, A Social Mechanism of Reputation
Management in Electronic Communities. Proceedings of
Fourth International Workshop on Cooperative Information
Agents, pages 154-165, 2000.

[29] Zacharias, G. and Maes, P., Trust Management Through
Reputation Mechanisms, Applied Artificial Intelligence 14,
pp 881-907, 2000.

474

