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ABSTRACT 
The problem of calculating a degree of reputation for agents 
acting as assistants to the members of an electronic community is 
discussed and a solution presented. Usual reputation mechanisms 
rely on feedback after interaction between agents. An alternative 
way to establish reputation is related with the position of each 
member of a community within the corresponding social network. 
We propose a method based on this idea, which is also used by 
well-known ranking algorithms, discuss its properties as well as 
experimental results and compare them to other reputation 
mechanisms for electronic communities supported by agents. The 
method proposed uses only local information in order to extract 
reputation and it is able to adapt automatically to the topology of 
the network or graph. 

Categories and Subject Descriptors 
I.2.11  Distributed Artificial Intelligence---Multiagent systems, 
G.3. Probability and Statistics---Markov processes, Stochastic 
processes, I.2.8   Problem Solving, Control Methods, and Search 
(F.2.2)---Graph and tree search strategies, and G.2.2 Graph 
Theory (F.2.2)---Graph algorithms. 

General Terms 
Algorithms, Measurement, Human Factors. 

Keywords 
Social Networks, Electronic Communities, Multi agent Systems, 
Reputation, Trust, Reputation mechanisms, Ranking algorithms, 
Web Intelligence. 

1. INTRODUCTION 
Electronic communities evolve around a given area of activity or 
topic of interest. The basis for their sustainability and persistence 

over time is the interchange of services between community 
members. Members of electronic communities can be people or 
agents acting on behalf of the former ones. Typical interchanges 
include commercial transactions, documentary information and 
knowledge exchanges, responses to answers, advice, suggestions, 
help, reference to further information, etc. As well-known 
examples of each type of communities one can cite e-Bay [8], 
Firefly [11], or Experts’ Exchange [9]. We focus our discussion 
on communities created for knowledge management and 
organizational learning purposes, specifically those ones 
supported by a multi agent system where each agent represents a 
single user [20,28]. Given that such communities thrive through 
service interchange or mutual support, it is crucial for each 
member to be aware of the trust that could be given to other 
members as well as their reputation. These two characteristics are 
inherently dynamic and some schemas have been devised in order 
to keep track of them for several types of communities. Usually 
they are calculated by means of some type of feedback mechanism 
that require involving actions on the part of the human user or the 
corresponding agent. This approach has some drawbacks that we 
try to overcome in this paper by means of an alternative approach 
based on the analysis of the location of each user within his 
community’s social network [26]. In section two, the 
characteristics of multi agent systems for community support are 
presented together with currently used mechanisms for trust and 
reputation maintenance. A characterization of social networks is 
given in section three that also analyzes their properties. Section 
four describes a new algorithm that extracts reputation mechanism 
for this type of multi agent systems. Section five presents a set of 
experiments on a concrete knowledge sharing community and 
Section six closes by discussing results and pointing to further 
work. 

2. MAS FOR COMMUNITY SUPPORT 
AND THEIR REPUTATION MECHANISMS  
Knowledge management in collaborative environments involves 
the interchange of information and knowledge among members of 
a community. The knowledge management cycle involves 
detecting when new knowledge is generated, who may be 
interested about it and delivering this knowledge to that people. 
Several approaches have been proposed in order to develop 
systems that detect each user’s knowledge needs [5]. Usually they 
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are based on measuring the similarity in the competences of 
community members. This requires the maintenance of some type 
of user profile. Several multi agent systems have been developed 
to serve these purposes. Their agents act on behalf of community 
members, maintaining profiles or routing questions to other 
members’ agents as, for example, in MARS [28] or the i2CAT 
Collaboratory [22, 23]. Communities based on user preferences 
also share some treats with these systems. For example, agents in 
Firefly [11] or Yenta [12] use profile similarity as a criterion for 
finding possible partners, which is at the basis for locating 
expertise within a community [24]. This same idea is used by 
recommender systems based on collaborative filtering [19]. In the 
case of knowledge sharing communities formed by a set of people 
with expertise in a given domain not only it is important that 
agents be able to detect which people (represented by other 
agents) possess the adequate expertise for solving the problem at 
hand but it is also crucial to assess to which extent some of the 
members are recognized as experts by their colleagues in the 
community. The trust and reputation of experts has been typically 
assessed as a function of the quality of their response to 
knowledge requests coming from other members in the 
community. This is the schema used in some organizational 
learning systems as, for example, Answer Garden [1] and some 
commercial knowledge communities [4,9,10], see [13] for a 
discussion of the different ratings that can be obtained by 
analyzing response quality. All these systems rely on feedback (in 
the form of a rating) from the person receiving the response to a 
previous demand. By combining these ratings a numerical value 
for each expert’s reputation can be calculated. A reputation 
measure gives an idea of the confidence one can have on the 
quality of an expert’s responses and serves as a basis for guiding 
the search for experts. The disadvantage of this type of reputation 
mechanism is that it needs the explicit and frequent involvement 
of users that issue ratings. This implies that a good reputation 
calculation and maintenance depends critically on the 
involvement of users and continued contribution of ratings. 
Usually an insufficient number of users or a low participation are 
at the root of bad collaborative filtering performance. Continuous 
requirements for feedback also create fatigue in users who tend to 
end up not issuing ratings at all. See a discussion about this in 
[14,19]. So, alternative, less intrusive and less demanding in terms 
of involvement methods are clearly of interest. This of course, 
raises the question of how can reputation be measured in the 
absence of any user feedback for expert’s responses. This goal is 
also important in devising reputation mechanisms for other types 
of agent systems. See [21] for a general discussion of trust and 
reputation in MAS and [29] for a similar discussion in a more 
restricted type of community dealing with e-commerce. We 
propose a system that tackles these problems by using the social 
network of the community. 

2.1 Social Networks 
A social network [26] is a representation of the relationships 
existing within a community. Even within the same community 
several types of social network can be built depending on the 
social relationship taken into account: kinship, acquaintanceship, 
friendship, mutual support, cooperation, and similarity are typical 
criteria used in establishing the social relationship components of 
a community. The corresponding social networks are represented 
as graphs. The construction of social networks for electronic 

communities helps in mapping the relationships among people 
that may not be aware of being related, given the special type of 
detached interaction peculiar to online communities. The basis for 
reconstructing these social interactions are the usage of the tools 
that give support to the online community which involve to some 
degree public information about each member [7]. See 
Referralweb for a multiagent system supporting that type of 
community mapping [15] and MARS [28] or NetExpert [20] for 
multi agent systems supporting knowledge sharing communities 
on the basis of the corresponding social network structure. 

2.2 Social Network topology and reputation 
The location of a given member of a community within a social 
network can be used to infer some properties about his or her 
degree of expertise, i.e., his or her reputation. Experts who are 
well-known and highly regarded by most other members of the 
community tend to be easily identified as highly connected nodes 
in the social network graph of their community [2,16,17]. This 
relation information could be a basis for a reputation mechanism 
used by users’ assistant agents instead of having to resort to 
explicit ratings issued by each user. We describe in the following 
how this approach has been tested in the context of a multi agent 
system that gives support to a knowledge sharing community. 
 

3. SOCIAL NETWORKS IN A 
COLLABORATORY 
The Collaboratory is a multi agent system supporting a research 
community. For a description detailed description, see [22,23]. 
The users of this system are currently the researchers involved in 
the Internet2 project in Catalonia, i2CAT (http://www.i2.-cat.net). 
They share a document repository and use a set of collaborative 
agents to obtain recommendations or for finding experts in a 
given topic within the community. Central to these functionalities 
is an agency that builds and maintains the social network of the 
community [18,20]. The social network building agency uses 
information located in he community members personal web 
pages and other sources. This information can be complemented 
with the knowledge contributed by users to the rest of the 
Collaboratory as well as the knowledge they obtain from it. This 
is done by resorting to several user profiles. Details of their 
construction can be seen in [19]. For the purposes of the 
experiments discussed in this paper the test community has been 
extended to all members of the Software Department of the 
Technical University of Catalonia (UPC).  
Each type of community may need its particular sources of 
information [26], for social network construction. Some of them 
are: 

• Personal web pages 

• Reports or documents authorship 

• Participation in a project 

• Hierarchical structure in the community or organization. 

• Sharing of physical resources. 

• Sharing of virtual resources such as news group, forums, etc. 

• Email traffic. 
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3.1 Building the Social Network 
In order to build the social network for the present experiment it 
was necessary to create knowledge and content models of users’ 
personal web pages. This was done by using WebMining, which is 
an agent that builds generic models from web pages, see [18,20]. 
For simplicity purposes one can see that model as a set of terms 
describing the knowledge contained in the personal pages. Once 
these models are obtained for each member of the community the 
Social Network is built by the RelationshipMaker agent by means 
of a similarity function that takes into account the strength of 
association between any two members in the community. 
Members of the community appear as nodes in the social network 
graph and the directed edges are calculated as follows. 
 
 
 
The weight of a relationship is the sum of three factors: 
 
 
 

∃email(a→b) is 1 when email address of member b exists in the 
web pages of member a , 0 otherwise. 
 
 
 
R(a,b) is the set of resources (files than can be reached through 
the Web) that belong to member b and they have been found in 
the personal web page of member a. 

depth(∝,x) is the depth of the resource ∝ in the personal web page 
of member x. 
 
 

#name(a→b) returns the number of occurrences of the name of 
member b within the personal web pages of member a. Extracting 
the name of a member of the community from the personal web 
page of another one is not trivial. Web pages are plain text 
information with html tags, there is no semantic information about 
names, thus a set of rules has to be used to disambiguate names, 
see [18] for the details. 
A second, undirected graphs, results from this step also. Their 
weight are calculated as follows:  
 
 
 

3.2 Social Network properties 
 
The social network generated using the proposed heuristics has 
the typical properties of the social networks. Figure 1 shows a 
partial view of the UPC’s undirected social network.  

 

Figure 1. Fragment of Social Network 
 
Table 1 shows the most important characteristics of the undirected 
Social Network. To formalize the notion of a small world, Watts 
and Strogatz [27] define the clustering coefficient C, and the 
characteristic path length L. We take the diameter of a graph as 
well D. [3] Clustering coefficient is a real in the interval [0..1]. 
 

 Social Network Random Network 

#nodes 139 139 

#edges 394 394 

C 0.7045 0.3774 

L 3.6572 3.016 

D 9 6 

 
Table 1: Social Networks characteristics 

 
Watts and Strogatz define a small world graph as one is which 
L≥Lrand, or L≈Lrand, and C>>Crand where Lrand and Crand are the 
characteristic path length and clustering coefficient of a random 
graph with the same number of nodes and edges. It is accepted 
that a small world graph should has (C/Crand)/(L/Lrand) > 1, our 
Social Network has (C/Crand)/(L/Lrand) = 1.5394. 
The distribution of the node degree of the UPC Social Network 
follows clearly an exponential distribution, few nodes with very 
high degree and many with low degree. That confirms that the 
social Network is a small world in the Watts and Strogatz sense. 
In figure 2 the node degree histogram is shown in a log scale. 
Because of the few nodes that the UPC Social Network has, the 
cumulated frequency has been used instead of the frequency. 
Thus, the fluctuation produced by the lack of points can be 
reduced. 
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Figure 2. Node degree Histogram  
Social network properties such as “smallworldliness” should be 
considered in order to improve knowledge extraction from the 
network and expertise location, because by exploiting these 
properties more efficient search [25] and propagation algorithms 
can be used, instead of traditional generic graph algorithms.  
 

4. USING SOCIAL NETWORK METRICS 
FOR REPUTATION MEASUREMENT 
NodeRanking is our proposal for creating a ranking of reputation 
ratings of community members by means of the corresponding 
Social Network.  
The rating that NodeRanking creates is based on the idea that each 
node on the graph has an associated degree of authority that can 
be seen as an importance measure. Initially, all nodes are assumed 
to have the same authority. After running NodeRanking, the 
resulting authority measure is used to infer the reputation of a 
node within the graph, that is, the reputation of a member within 
his community.  
Authority of a node, a, is calculated as a function of the total 
measure of authority present in the network and the authority of 
the nodes pointing to a. If a node is not referred by any other node 
in the network, it is assigned a default authority value. Authority 
values are positive values. 
The algorithm for authority calculation is inspired in the ranking 
algorithms for web pages based on web topology [16,17]. The 
idea is to apply a similar reasoning about link topology in web 
pages to the topology of a Social Network, i.e., the link topology 
of a directed graph. In a directed graph the edges have a direction, 
the out-edges of a node are the edges that start in this node, the 
out-nodes are the nodes that can be reached through out-edges.  
The main idea of the NodeRanking algorithm is that each node 
has an authority and a part of this authority is propagated to the 
out-nodes via out-edges. 
 
 

 
 

Figure 3. Flow of authority in NodeRanking 
 
The authority of a node depends on the authority of its in-nodes. 
The authority of one of the out-nodes in figure 3 node depends in 
part on the authority of this node. Cycles in the graph can produce 
critical deadlocks in the calculations. The NodeRanking algorithm 
overcomes these problems and insures convergence. 

4.1 The NodeRanking Algorithm 
NodeRanking follows essentially the random walker strategy to 
explore the graph. It starts in a randomly selected node, and 
proceeds by selecting one of the nodes that can be reached 
through out-edges.  
 
 
 
 
 
 

 
 

Figure 4. NodeRanking algorithm 
We have used some functions that require additional explanation. 
getNode (): returns a randomly chosen node of the graph. The 
probability is uniform. 
getNextNode(node x): returns one of the out-neighbors nodes of 
node x. Each node has a set, that can be empty, of out-edges that 
points to other nodes. This function can return a null node to stop 
the path of the random walker by introducing some elements of 
randomness. When getNextNode() returns a null node, in fact, the 
path is broken. There are two cases where the path is broken. The 
first one is when the algorithm arrives at a node that has been 
already visited in the previous k steps. The algorithm keeps a 
window of k elements and breaks the path if a new node already 
exists in the window. The second case is when a certain value of 
jumping probability is reached. In effect, the random walker 
evaluates the jumping probability whenever it reaches a node. 
This probability is a function of the connectivity of the node. The 
walker skips the node with a probability Prjump (a).  
 
 

do 
 n ← getNode(v) 
 do 
   passAuthority(n) 
   nnew ← getNextNode(n) 
   n ← nnew   
 while (∃ nnew) 
while (¬ converge( )) 
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Nodes with fewer out-edges have a greater probability of breaking 
the path. This could be seen as a walker that gets bored because of 
the reduce range of choices. getNextNode( ) returns the next node 
b to be visited from a. This node is selected with a probability that 
is calculated as a function of the weight of the edge between a and 
b, the corresponding density probability function is shown below.  
 
 
 
  
 
Where w (a -> b) is the weight of the link connecting a and b.  
passAuthority(node x): this function assigns part of the authority 
of node x to all the nodes that are pointed by x. The next equation 
shows the change of authority between a node x and a node y. 
 
 
  
 
Where auth(y) is the authority of the node y and Fy is a factor to 
maintain the value of authority within a limited range of values. 
Without this factor, values calculated with equation 8 would tend 
to infinity because the authority of a node gets higher and higher 
as the method proceeds. F controls the growth of authority and 
also eliminates the effects of randomness introduced by the 
asynchronicity in the authority updating. Each node has its own F 
factor that remembers the state of the total authority value of the 
graph the last time that the node was involved in a passAuthority 
function call. These factors depend on the authority value of all 
the nodes in the graph at the time that the authority of node y was 
updated. The factors of more frequently visited nodes grow faster 
than the values of the less visited ones. The growth of these 
factor’s values is monotonously increasing. Thus, we can insure 
convergence towards a finite value. Without this factor, nodes that 
had been last in the random selection would have an advantage 
over the other ones, because the graph is accumulating more and 
more authority as the algorithm proceeds. Factor F is initialized 
for every node as the sum of the authority of all nodes in the 
graph. The initial authority of a node has to be positive, and factor 
F has to be bigger or equal than 1. 
converge( ): this function can be evaluated anytime, it’s a test on 
all the nodes in the graph. Each node remembers its last increment 
in authority. The increment in authority tends to 0 because of the 
F factor, as can be seen in equation 8. The function converge() 
tests the state of each node. If the increment is less than a given 
threshold, ϕ, the node will be considered as stationary. When all 
the nodes of the graph are stationary the algorithm ends. Actually 
the convergence function does not test all the nodes because it 
would not be very efficient. The event of becoming stationary is 
notified by the nodes themselves.  

 

4.2 Differences with Pagerank and HITS 
HITS [16] and Pagerank [17] algorithms are the reference for web 
page ranking algorithms. The second one is the core of the 
ranking performed by the commercial Google search engine. They 
are based on finding out the stationary state of a matrix, the 
variance-covariance matrix in the case of HITS and the transition 
probability matrix for Pagerank. In order to do this, the adjacency 
matrix of the graph has to be known. Moreover, when the 
principal eigenvector is calculated using the technique known as 
“iterative product” the vector that contains the principal eigen 
vector, has to be normalized frequently, so the whole vector has to 
be known. HITS and Pagerank use global information of the 
graph. That means that it is difficult to use directly these 
algorithms to rank huge graphs. Let’s think, for example about a 
not so big graph, let’s say a graph of 25000 nodes. Its adjacency 
matrix will have 6.25*108 positions. Because of the authority 
updating mechanism that Pagerank and HITS use, there is a 
synchronization step in the process of authority transfer since the 
state of all nodes has to be know in order to update the state of a 
single one of them. On the contrary, our algorithm, NodeRanking, 
uses only local information. Each node x only needs to know the 
about nodes that it points to and these other ones have to be aware 
of x’s convergence towards the stationary state. In order to 
retrieve the results of the ranking, a centralization point is 
required, but even in this process the communication proceeds 
unidirectionally (from the nodes to the controller) so it is not 
necessary at all to have information about the whole graph. 
Pagerank and NodeRanking are almost identical in the underlying 
idea, both of them follow the same random walker strategy. 
Actually the transition probability matrix of a synchronous 
version of NodeRanking can be defined as follows: 

PJ
n

JM TT )11(111 −+=  (9) 

Where 1 is a vector of 1s, n is the number of nodes, P is the 
adjacency matrix normalized by rows, J is the jumping probability 
matrix defined as a 0 matrix where the diagonal contains the 
jumping probability of a node, i.e. Jii contains node i jumping 
probability (as defined in equation 6). The results obtained by 
finding out the stationary state of the Markov chain defined by the 
transition probability matrix M, i.e finding out the principal 
eigenvector of the matrix MT, are equivalent to the results 
obtained by the original NodeRanking algorithm. The advantage 
of the original NodeRanking is that it is not necessary to know the 
graph’s adjacency matrix as it happens in techniques based on 
transition probability or variance-covariance matrices.  
As it can be seen in equation 9, matrix J contains the jumping 
probability of a node. Each node has a different jumping 
probability, calculated by applying equation 6. So, the jumping 
probability only depends on local information. The average 
jumping probability depends on the distribution of the nodes’ out-
degrees. Thus NodeRanking is able to adapt dynamically to 
graphs with different topologies because the jumping probability 
depends only on the node’s out-edges. This is clearly in contrast 
with Pagerank where the jumping probability is not adaptative, 
and it is fixed to values in the [0.1..0.2] range, usually 0.15.  
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5. EXPERIMENTS ABOUT RANKING AND 
REPUTATION 
In order to validate the obtained rankings as a correct reputation 
measure they had to be compared against a real and accepted 
measure of reputation. This test community being a research 
community, a good way to establish a comparison was to resort to 
citation index impact values for each one of the 34 members 
calculated by an independent scientific publication ranking 
agency. That is, citation indexes for each of the 34 randomly 
selected members of the Software Department were compared 
against the rating that NodeRaking yielded, RankNodeRanking, and 
also against the ratings that Pagerank yielded. Citation indexes 
are a clear indicator of reputation in scientific communities. 
CiteSeer [6] was used as a source for citation index values. In 
CiteSeer, the papers of each researcher can be retrieved together 
with the corresponding number of citations and self-citations for 
each of his or her papers. We have built two rankings for the 
members of our test community. Rankcite, sorts researchers by 
number of citations and Rankcite-self, sorts researchers by number 
of citations without counting self-citations. These rankings can be 
considered as reference rankings, the closest ones to real 
reputation in the scientific community. 
NodeRanking was applied to the social network of the 
experimental community formed by the members of the UPC 
Software Department. The parameters that have been used along 
all the experiment are k=4 and ϕ=10-6. Afterwards, a fragment of 
the community, 34 members, was selected randomly to become 
the test set. The ranking obtained by means of NodeRanking was 
called RankNodeRanking. The ranking obtained by NodeRanking was 
compared against the results obtained by applying Pagerank with 
the e=0.15 and also against the results of the HITS algorithm. 
Pagerank and HITS work with no weighted graphs. Weighted 
edges can be useful, if they are available, because the normalized 
weight of an edge contributes with more information than the fact 
that an edge exists or not. The UPC Social Network has weighted 
edges, so two rankings instead of one were built for each 
algorithm and one was calculated without taking the weights into 
account. It was called RankPageRank or RankHitsAuthority The second 
ranking, RankPageRank(w), was calculated by having weights into 
account.  
To compare the quality of the ratings obtained by NodeRanking, 
Pagerank, HITS and the reference rankings built using Citeseer 
the correlation coefficient between rankings was used as a 
similarity measure.  
Table 2 shows the correlation values between reference rankings 
Rankcite, Rankcite-self, considered as the desired rankings, and the 
rest. The ranking RankNodeRanking is the average of twenty 
executions of the algorithm, the mean and the standard deviation 
is given. That variability is due to the asynchronicity of the 
authority transfer process within NodeRanking. Independently of 
the reference ranking, the same order among the generated 
rankings is obtained. RankNodeRanking values are always a little 
better than RankPageRank and RankPageRank(w) values and these ones 
are better than the RankHitsAuth(w) and RankHitsAuth. It is interesting to 
remark that the rankings obtained by HITS algorithm are better if 
the edges’ weights are taken into account. However, in any case, 
the correlation is very strong. Correlation coefficient goes from [-
1..1], where 0 means that there is no correlation, the correlation 
between two random rankings is close to 0. Rankings with a 

correlation of 0.621 or 0.687 against the reference ranking can not 
be considered perfect even though they are similar enough to be 
interesting.  

Correlation 
Coefficient 

Rankcite Rankcite-self 

Rankcite 1.0 0.983 
Rankcite-self 0.983 1.0 
RankNodeRanking 0.687, s=8.6*10-4  0.621, s=0.011 
RankPageRank(w) 0.535 0.486 
RankPageRank 0.521 0.495 
RankHitsAuth(w) 0.412 0.383 
RankHitsAuth 0.342 0.323 

 
Table 2. Correlation values between rankings 

Figure 5 shows the correlation between Rankcite as a desired 
ranking and the rest of rankings 
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Figure 5. Correlation with Rankcite as reference 

Figure 6 shows the correlation between Rankcite-self as a desired 
ranking and all the rest.  
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As it can be observed, the rankings obtained by NodeRanking are 
better than the ones obtained by Pagerank. Both algorithms 
follow the same random walker strategy with the difference of the 
authority updating mechanism, which is asynchronous in 
NodeRanking and synchronous in Pagerank. So, the results 
should be similar, the reason of the best performance of 
NodeRanking may be due to its ability to adapt itself to the 
graph’s topology.  
In figure 2 the distribution of nodes out-edges degrees can be 
observed. It follows an exponential distribution that is 
characteristic of the graphs that are small worlds such as the 
Social Network of our case of study is. The average jumping 
probability can be calculated using this distribution that we call 
dout-connectivity. 
 
                  
 
The average jumping probability of our case of study social 
network is 0.5314. So NodeRanking with its dynamical 
adjustment of the jumping probability is able to adapt to different 
graph topologies. In contrast, Pagerank is not able to calculate 
such good rankings for social networks nodes because of the 
exponential distribution of the connectivity in the graphs. There is 
a lot of nodes with no out-edges or with very few out-edges. So, a 
jumping probability of 0.15 (the one used in Pagerank) is too 
small and Pagerank falls into the rank sink problem. If Pagerank 
were set to work with a jumping probability of 0.5414 the results 
would be equivalent to the obtained by NodeRanking. This is to 
be expected and perfectly coherent. However, the fact that 
NodeRanking only uses local information is an advantage over 
Pagerank in order to extract reputation and being more general 
extracting ranks.  
 

6. DISCUSSION AND FURTHER 
RESEARCH 
The values of the ratings calculated by the topological information 
of a community’s social network has been used as a measure of 
each member’s reputation within a community. A new algorithm 
NodeRanking has been devised to obtain such measures. An 
experiment has been performed on a real community and the 
results compared against a well-known valid measure of 
reputation for that type of communities. The results seem to 
indicate that NodeRanking values are a good approximation of 
reputation measures. The well known Pagerank and HITS 
algorithms have been also used to find out the member’s 
reputation, the Pagerank results has been slightly worse than the 
results yielded by NodeRanking. It can be concluded that 
NodeRanking builds good approximation of reputation. However 
NodeRanking is able to assess the reputation only by using local 
information. It is a distributed algorithm. NodeRanking does not 
need to know the entire graph to operate which Pagerank does. 
The proposed criterion for reputation measurement in a 
collaborative multi agent system and the corresponding method 
have as an advantage with respect to other ones [29] the fact that 
it does not require to have users continuously and explicitly 
issuing ratings, a method that is seen as a burden on users and 
eventually a reason for poor performance of collaborative 

systems. With our proposal a quite approximate reputation 
ranking can be calculated a priori without the typical and 
annoying feedback request used in collaborative systems. 
Another advantage of NodeRanking is that the proposed method is 
solely based on topological information, thus making complete 
abstraction of any other information. On the other hand its success 
hinges critically on the quality of fit between the social network 
representation and the real community structure. In the case of the 
social network of the Collaboratory it seems that the information 
used to build the social network is well suited to research 
communities.  
Other multi agent system methods that use social networks either 
do not use them for reputation measurement, as is the case of 
Referralweb [15] or still rely exclusively on rating feedback from 
users as Yu [28] does. This last one has only been tested on a 
simulated community as opposed to the test we carried on a real 
one (another example of this tests on simulated communities is 
Zacharias and Maes [29]). 
Further experimentation will be carried on with other types of 
knowledge sharing communities in order to test the dependence 
between the information used in building the social network and 
the final quality of the reputation measurements obtained from it.  
Finally, and as another interesting field, NodeRanking could be 
tested as a generic and fully distributed algorithm to rank nodes of 
any kind of graph, such as the Web. Following this line some 
interesting results has been obtained applying NodeRanking to 
web-like graphs. Rankings that are equivalent to the reference 
ones, such as Pagerank and HITS, has been obtained using only 
local information. 
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