
A Knowledge-Based Approach for Handling Exceptions in Business Processes

Chrysanthos Dellarocas Mark Klein

Center for Coordination Science
Sloan School of Management

Massachusetts Institute of Technology
Room E53-315, Cambridge, MA 02139, USA

{ dell , m_klein}@mit.edu

ABSTRACT

This paper describes a novel knowledge-based approach for helping business process

designers and participants better manage exceptions (deviations from an ideal sequence of

events caused by design errors, resource failures, requirement changes etc.) that can occur

during the enactment of a process. This approach is based on exploiting a generic and

reusable body of knowledge describing what kinds of exceptions can occur in collaborative

work processes, how these exceptions can be detected, and how they can be resolved. This

work builds upon previous efforts from the MIT Process Handbook project and from research

on conflict management in collaborative design.

1. INTRODUCTION

Business process models typically describe the “normal” flow of events in an ideal world. For

example, the model of a product development process typically includes a “design product”

activity, followed by a “build product” activity, which, in turn, is followed by a “deliver

product” activity. Reality, however, tends to be more complicated. During the enactment of a

business process a lot of exceptions, that is, deviations from the ideal sequence of events,

might occur. For example, product design might prove to be inconsistent with the capabiliti es

of the manufacturing plant. Manufacturing stations might break down in the middle of jobs.

Delivery trucks might go on strike. To assure that a process is still able to fulfill it s

organizational goals, process participants must be able to detect, diagnose and successfully

resolve such exceptional conditions as they occur.

Traditionally, managers have been relying on their experience and understanding of a process

in order to handle deviations from the expected flow of events. However, the rising

complexity of modern business processes and the accelerating pace with which these

processes evolve and change has made the reliance on individual managers’ experience and

intuition an increasingly less satisfactory way to deal with exceptions.

Business process modeling has been used successfully in order to increase understanding,

facilit ate analysis and enhance communication among the various stakeholders involved in

the design and enactment of an “ ideal” business process. Our position is that analogous

model-based tools can be built i n order to limit the complexity of dealing with exceptions.

The standard approach of incorporating exception handling in process models has been to try

to anticipate beforehand all possible exceptional conditions that might arise and augment an

“ ideal” process model with additional conditional elements that represent exception handling

actions. This approach, however, is problematic for a number of reasons. First, it results in

cluttered, overly complex, models, which hinder instead of enhancing understanding and

communication. Second, the anticipation of possible failure modes once again relies on the

experience and intuition of the model designers. Third, the approach cannot help with

exceptions that have not been explicitl y hard-coded into the model.

This paper describes an encoded knowledge-based approach for handling exceptions in

business processes. Rather than requiring process designers to anticipate all possible

exceptions up front and incorporate them into their models, this approach is based on a set of

novel process analysis tools, which assist designers to analyze “ideal” process models,

anticipate possible exceptions and suggest ways in which the “ideal” process can be

instrumented in order to detect or even to avoid them. When exception manifestations occur,

the same tools can be used to diagnose their underlying causes, and suggest specific

interventions for resolving them. The approach is based on an extensible encoded knowledge

base of generic strategies for detecting, diagnosing and resolving exceptions. The remainder

of the paper will discuss how this approach works, how it relates to our previous work in this

area, and some directions for future work.

2. A KNOWLEDGE-BASED APPROACH TO EXCEPTION HANDLING

2.1 Anticipating and Preparing for Exceptions

The first step in our approach assists process designers to determine, for a given “ ideal”

process model, the ways that the process may fail and then instrument the process so that

these failures can be detected or avoided. The principal idea here is to compare a process

model against a taxonomy of process elements annotated with possible failure modes. Our

idea is motivated by the observation that the causes of most process failures have a

straightforward association with one of the three principal elements of business process

models: activities, resources and constraints (describing goals and assumptions). Table 1 lists

some examples.

Exceptions related to

constraints

- Goals contain conflicts or inconsistencies

- Unanticipated requirement changes violate assumptions

Exceptions related to

activities

- Wrong process selected for stated goals

- Process contains design flaws

- Process contains intrinsic possibiliti es of conflicts, deadlock, etc.

Exceptions related to

resources

- Wrong resource assigned to task

- Resource unavailable

- Resource fails in the middle of task

Table 1. A Subset of Exception Causes.

A process element taxonomy can be defined as a hierarchy of process element templates, with

very generic elements at the top and increasingly specialized elements below. For example,

Figure 1 depicts a small activity taxonomy. Each activity can have attributes, e.g. that define

the challenges for which it is well -suited. Note that activity specialization is different from

decomposition, which involves breaking an activity down into subactivities. While a

subactivity represents a part of a process; a specialization represents a “subtype” or “way of”

doing the process [10]. Resource and constraint taxonomies can be defined in a similar

manner.

Order Fulfillment
* order/invoice mismatch

Core Activities

Manage Flow
* misrouted
* delayed

Manage Fit
* design conflict

Pull-Based
* resource poaching

Push-Based
* manager bias

Manage Sharing

Coordination Mechanisms

Root
* agent unavailable

Figure 1. An Example of a Generic Activity Taxonomy with Failure Modes.

distribute shared
design resources
(by request)

allocate design
tasks (manager)

consolidate
sub-designs

build
product

deliver
product

use product

perform design
(team 1)

perform design
(team 3)

perform design
(team 2)

Figure 2. An Example “Ideal” Process Model.

Process element templates are annotated with the ways in which they can fail , i.e. with their

characteristic exception types. Failure modes for a given process template can be uncovered

using failure mode analysis [11]. Each process element in a taxonomy inherits all

characteristic failure modes of its parent (generalization) and may contain additional failure

modes which are specific to it.

Given an “ ideal” process model, to identify failure modes we need only identify the generic

process element templates that match each element (activity, resource, constraint) of the

model. The potentially applicable exception types will t hen consist of the union of all failure

modes inherited from the matching templates. We can see, for example, that the “distribute

shared design resources” activity in Figure 2 is a subtype of the generic “pull -based sharing”

process template in Figure 1, since the resources are “pulled” by their consumers rather than

“pushed” (i.e. allocated) by their producers. This template includes among its characteristic

failure modes the exception called “poaching” , wherein resources go disproportionately to

lower priority tasks because agents with lower priority tasks happen to reserve them first. The

“deliver product” activity is a specialization of the “manage flow” template, with

characteristic exceptions such as “ item delayed”, “ item misrouted” and so on. All activities

also inherit the characteristic failure modes from the generalizations of these matching

templates, such as “ responsible agent is unavailable”, and so on.

The process designer can select, from this li st of possible exception types, the ones that seem

most important in his/her particular context. He/she might know, for example, that the

“deliver product” process is already highly robust and that there is no need to augment it with

additional exception handling capabiliti es.

For each exception type of interest, the process designer can then decide how to instrument

the process in order to detect these exceptions. While processes can fail i n many different

ways, such failures have a relatively limited number of different manifestations, including

missed deadlines, violations of artifact constraints, exceeding resource limits, and so on.

Every exception type includes pointers to exception detection process templates in the process

taxonomy that specify how to detect the symptoms manifested by that exception type. These

templates, once interleaved into the “ideal” process model by the workflow designer, play the

role of “sentinels” that check for signs of actual or impending failure. The template for

detecting the “resource poaching” exception, for example, operates by comparing the average

priority of tasks that quickly receive shared resources against the average priority of all tasks.

The “item delayed”, “agent unavailable”, and “ item misrouted” exceptions can all be detected

using time-out mechanisms. Similar pointers exist to exception avoidance processes, whose

purpose is to try to prevent the exceptional condition from occurring at all .

2.2 Diagnosing Exceptions

When exceptions actually occur during the enactment of a process, our tools can assist

process participants in figuring out how to react. Just as in medical domains, selecting an

appropriate intervention requires understanding the underlying cause of the problem, i.e. its

diagnosis. A key challenge here, however, is that the symptoms revealed by the exception

detection processes can suggest a wide variety of possible underlying causes. Many different

exceptions (e.g. “agent not available”, “ item misrouted” etc.) typically manifest themselves,

for example, as missed deadlines.

Our approach for diagnosing exception causes is based on heuristic classification [2]. It works

by traversing a diagnosis taxonomy. Exception types can be arranged into a taxonomy

ranging from highly general failure modes at the top to more specific ones at the bottom;

every exception type includes a set of defining characteristics that need to be true in order to

make that diagnosis potentially applicable to the current situation (Figure 3).

When an exception is detected, the responsible process participant traverses the exception

type taxonomy top-down like a decision tree, starting from the diagnoses implied by the

manifest symptoms and iteratively refining the specificity of the diagnoses by eliminating

exception types whose defining characteristics are not satisfied. Distinguishing among

candidate diagnoses will often require that the user get additional information about the

current exception and its context, just as medical diagnosis often involves performing

additional tests.

resource poaching

design error

design conflict

misrouted delayed

transport failure order/invoice mismatch manager bias

enactment error

error

requirements change

agent unavailable

resource unavailable

change

root

Figure 3. A Subset of the Exception Type Taxonomy.

The user then has a specific set of questions that he/she can ask in order to narrow down the

exception diagnosis. If the appropriate information is available on-line, then answering such

questions and thereby eliminating some diagnoses can potentially be automated.

2.3 Resolving Exceptions

Once an exception has been detected and at least tentatively diagnosed, one is ready to define

an prescription that resolves the exception and returns the process to a viable state. This can

be achieved, in our approach, by selecting and instantiating one of the generic exception

resolution strategies that are associated with the hypothesized diagnosis. These strategies are

processes like any other, are captured in a portion of the process taxonomy, and are annotated

with attributes defining the preconditions that must be satisfied for that strategy to be

applicable. We have accumulated roughly 200 such strategies to date, including for example:

• IF a process fails, THEN try a different process for achieving the same goal

• IF a highly serial process is operating too slowly to meet an impending deadline,

THEN pipeline (i.e. release partial results to allow later tasks to start earlier) or parallelize

to increase concurrency

• IF an agent may be late in producing a time-criti cal output, THEN see whether the

consumer agent will accept a less accurate output in exchange for a quicker response

Since an exception can have several possible resolutions, each suitable for different

situations, we use a procedure identical to that used in diagnosis to find the right one.

Imagine, for example, that we want a resolution for the diagnosis “agent unavailable”. We

start at the root of the process resolution taxonomy branch associated with that diagnosis

(Figure 4).

wait till agent available find new agent with same skills change task to meet available skills

find agent for task

Figure 4. A Fragment of the Resolution Process Taxonomy.

The system user can prune suggested strategies based on which preconditions are satisfied,

and enact or customize a strategy selected from the remainder. Note that the substantial input

may be needed from the user in some cases in order to instantiate a strategy into specific

actions.

2.4 Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the approach

described in the previous sections. It consists of two cross-referenced taxonomies: a

specialization taxonomy of process model entities (activities, resources, constraints) and a

taxonomy of exception types.

Process Taxonomy Except ion Taxonomy

Except ion Type

Diagnost ic ru les

Links to detect ion
processes

Links to avoidance
processes

Links to resolut ion
processes

Activi ty Type

Decompos i t ion

Precondi t ions

Links to possible
except ion types

Postcondi t ions

Figure 5. Overview of Exception Handling Knowledge Structures.

During process design time, process models are compared against the process taxonomy in

order to identify possible failure modes. Once failure modes are identified, the exception type

taxonomy provides links to appropriate detection and avoidance processes. During process

enactment time, exception manifestations are compared against the exception type taxonomy

in order to identify possible diagnoses. Once plausible diagnoses have been identified, the

exception taxonomy provides links to resolution processes.

3. RELATED WORK

The approach described here integrates and extends two long-standing lines of research: one

addressing coordination science principles about how to represent and utili ze process

knowledge, another addressing how artificial intelli gence techniques can be applied to

detecting and resolving conflicts in collaborative design settings:

One component is a body of work pursued over the past five years by the Process Handbook

project at the MIT Center for Coordination Science [3, 9, 10]. The goal of this project is to

produce a repository of process knowledge and associated tools that help people to better

redesign organizational processes, learn about organizations, and automatically generate

software. The Handbook database continues to grow and currently includes over 4500 models

covering a broad range of business processes. A mature Windows-based tool for editing the

Handbook database contents, as well as a Web-based tool for read-only access have been

developed. A key insight from this work is that a repository of business process templates,

structured as a specialization taxonomy, can assist people to design innovative business

processes more quickly by allowing them to retrieve, contrast and customize interesting

examples, make “distant analogies” , and utili ze “recombinant” (mix-and-match) design

techniques [5].

The other key component of this work is nearly a decade of development and evaluation of

systems for handling multi -agent conflicts in collaborative design [6, 7] and collaborative

requirements capture [8]. This work resulted in principles and technology for automatically

detecting, diagnosing and resolving design conflicts between both human and computational

agents, building upon a knowledge base of roughly 300 conflict types and resolution

strategies. This technology has been applied successfully in several domains including

architectural, local area network and fluid sensor design. A key insight from this work is that

design conflicts can be detected and resolved using a knowledge base of generic and highly

reusable conflict management strategies, structured using diagnostic principles originally

applied to medical expert systems. Our experience to date suggests that this knowledge is

relatively easy to acquire and can be applied unchanged to multiple domains.

The work described in this paper integrates and extends these two lines of research in an

innovative and, we believe, powerful way. The central insights underlying this integration are

that (1) business process exceptions can be handled by generalizing the diagnostic algorithms

and knowledge base underlying design conflict, and (2) the exception handling knowledge

base can be captured as a set of process templates that can be retrieved, compared and

customized using the principles embodied in the Process Handbook. The result of this

integration is an approach that allows process designers and participants to better take

advantage of insights collected from a wide range of experts and domains when trying to

determine what exceptions can occur in their process, as well as how such exceptions can be

detected, diagnosed and resolved.

4. CURRENT STATUS AND FUTURE WORK

To date, we have captured over 4500 generic process templates, 100 exception types and 200

exception resolution strategies and have constructed a cross-referenced knowledge base with

this information on top of the Process Handbook tools.

This paper has emphasized the use of our exception handling knowledge base as a decision

support tool for humans. Our ongoing work is primarily focused on connecting our

technology with automated process enactment systems, such as workflow controllers and

software agent systems. It is widely recognized that state-of-the art workflow technology

provides very rudimentary support for exception handling [1, 4]. The result of our work will

be a prototype implementation of a domain-independent exception handling engine, which

oversees the enactment of a workflow script, monitors for exceptions and decides

(automatically for the most part) how to intervene in order to resolve them. Given an “ ideal”

workflow script, the engine first uses the exception handling knowledge base in order to

anticipate potential exceptions and augment the system with additional actions that play the

role of software sentinels. During enactment time, these sentinels automatically trigger the

diagnostic services of the engine when they detect symptoms of exceptional conditions. The

diagnostic services traverse the exception type taxonomy, select (possibly with human

assistance) a diagnosis and then select and instantiate a resolution plan. The resolution plan is

eventually translated into a set of workflow modification operations (e.g. add tool, remove

tool, modify connection, etc.), which are dynamically applied to the executing workflow.

For further information about our work, please see the Adaptive Systems and Evolutionary

Software web site at http://ccs.mit.edu/ases/. For further information on the Process

Handbook, see http://ccs.mit.edu/

5. REFERENCES

1. P. Barthelmess and J. Wainer. Workflow Systems: a few Definitions and a few
Suggestions. Proc. Conf. on Organizational Computing Systems (COOCS’95), Aug.
13-16, 1995, pp. 138-147.

2. W. J. Clancey. Heuristic Classification. Artifi cial Intelli gence, 27(3), 1985, pp. 289-
350.

3. C. Dellarocas, J. Lee, T.W. Malone, K. Crowston and B. Pentland. Using a Process
Handbook to Design Organizational Processes. Proceedings of the AAAI 1994 Spring
Symposium on Computational Organization Design, Stanford, CA, March 21-23, 1994,
pp. 50-56.

4. C.A. Elli s, K. Keddara and G. Rozenberg. Dynamic Change Within Workflow
Systems. Proc. Conf. On Organizational Computing Systems, (COOCS’95), Aug. 13-
16, 1995, pp. 10-21.

5. G. Herman, M. Klein, et al. A Template-Based Process Redesign Methodology Based
on the Process Handbook. MIT Center for Coordination Science Working Paper #tba

6. M. Klein. Conflict resolution in cooperative design. University of Illi nois at Urbana-
Champaign Technical Report UIUCDCS-R-89-1557.

7. M. Klein. Supporting Conflict Resolution in Cooperative Design Systems. IEEE
Transactions on Systems, Man and Cybernetics, 21(6), June 1991, pp. 1379-1390.

8. M. Klein. An Exception Handling Approach to Enhancing Consistency, Completeness
and Correctness in Collaborative Requirements Capture. Concurrent Engineering:
Research and Applications, 5 (1), March 1997, pp. 37-46.

9. T.W. Malone, K. Crowston, J. Lee and B. Pentland. Tools for Inventing Organizations:
Toward a Handbook of Organizational Processes, Proceedings of 2nd IEEE Workshop
on Enabling Tech. Infrastructure for Collaborative Enterprises, April 20-22, 1993,
pp.72-82.

10. T.W. Malone, et al. Toward a handbook of organizational processes. MIT Center for
Coordination Science Working Paper 198, January 1997. To appear in Management
Science.

11. D. Raheja. Software system failure mode and effects analysis (SSFMEA)-a tool for
reliabilit y growth. Proceedings of the Int’ l Symp. on Reliabilit y and Maintainabilit y
(ISRM’90), Tokyo, Japan, June 1990, pp. 271-277.

