The SYNTHESIS Environment for Component-Based Softwar e Development

Chrysanthos Dell arocas
Sloan Schod of Management
Massachusetts Ingtitute of Techndogy
Room E53-315,Cambridge, MA 02139,U.S.A.
Tel. +1(617) 2588115
dell @mit.edu

Abstract:

Comporent-based software devdopment places an
emphasis on identifying andmanagng interdependencies
among peexsting peces of software in arder to integrate
them into new systems. Traditiond software devdopment
methoddogies, on the other hand place an emphasis on
representing comporents, leaving the description and
management of comporent interdependencies implicit, or
distributed among the @mporents. To suppat
comporent-based software devdopment, we need new
methoddogies andtodswhich elevate the representation
and management of software comporent
interdependencies to a dstinct design poblem,
orthogona to the spedfication andimplementation d the
core functiond pieces of an appication. A core dement
of such methoddogies will be a “design handbok” of
software comporent interconnedion, which catalogues
comnon software interconnedion dependencies and sets
of alternative protocols for managng them. SYNTHESIS, a
comporent-based software devdopment environment
based on this perspedive has been devdoped and
successully used to minimize the manud effort required
to integrate independently devdoped comporents into
new appications.

1. Introduction

During the past few yeas a range of tednicd,
eonamic, and socia fadors have mme together to
encourage a new way of software engineeing that is
often referred to as comporent-based software
engineging. This approach bases g/stem development on
the definition o software achitedures that capture the
needs of a given organizdion and onthe seledion and
integration d comporents that implement the pieces of
these achitedures. The big promise of comporent-based
software engineaing lies in the posshility to reuse
independently developed, off-the-shelf comporents in

order to buld new applicdions more rapidly,
eonamicdly, and reliably than with traditional
approades.

Despite the sdignificant emnamic potential and
substantial reseach effort that has been pu into
comporent-based software engineaing, so far this new
paradigm of software development has failed to gain a
significant presence in large-scde, commercial
development projeds [2, 6]. Part of the reason is related
to the difficulty of locaing appropriate cmporents and
the legal isaies surroundng their reuse. But even when
such issles have been resolved, the ladk of software
development methoddogies 9pedficdly designed to
suppat comporent-based development is discouraging
many software enginea's from adogtingit.

This paper argues that traditional software
development methoddogies are not well suited to the
requirements of comporent-based software development.
It identifies the treament of interdependencies among
software @mporents as one fundamental area where
comporent-based development poses new requirements,
not met by traditional methoddogies and todls. It
proposes a new perspedive for developing software
systems which treds the interconredion o comporents
in a software system as a separate design problem,
entitled to its own representations and design frameworks.
It introduces SYNTHESIS, a software development
environment based on ou perspedive axd reports on
experience gained by wing the system to develop rew
applicaions from sets of existing comporents. Finally, it
discusses related work and presents ome diredions for
future reseach.

2. Requirements for
Softwar e Development

Component-Based

In this sdion we identify a fundamenta difference
between traditional and comporent-based software
development. We ague that this difference merits the

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineeing Practice (STEP 97),

London UK, July 14-18, 1997

development of new methoddogies pedficdly tailored
to the neads of the new paradigm. Finally, we introduce a
perspedive on which such methoddogies can be based.

Both traditional and comporent-based software
development methoddogies need to spedfy the
requirements and owrall architedure of the target
software system. However, from then on the two
paradigms of software development focus on a different
set of design adivities.

The objedive of traditional software development
methoddogies is to fadlit ate the creation of one or more
implementation-level modues which, together,
implement the functionality and data of a software
system. Despite the diversity of the various
methoddogies in use today, they are dl essntialy
providing models and techniques that help answer the
following guestions:

» How can we best divide the required functionality and
data of a system into a set of comporents.

* How can we best encode the required interadions
among comporents of a system into comporent
interfaces.

Traditional methoddogies focus on dfining
comporents, leaving the definition d interdependencies
among comporents implicit, and the implementation o
protocols for managing them fragmented and dstributed
amongthe interading comporents. At the implementation
level, software systems are sets of moduesin ore or more
programming languages. Althoughmodues come under a
variety of names (procedures, padkages, objeds, clusters
etc.), they are dl essntially abstradions for comporents.

Most programming languages diredly suppat a small
set of primitive interconredion mechanisms, such as
procedure cdls, methodinvocation, shared variables, etc.
Such mechanisms are not sufficient for managing more
complex dependencies that are ommongdacein today's
software systems. Complex dependencies require the
introduwction d more mplex managing protocols,
typicdly comprising severa lines of code. By failing to
suppat separate astradions for representing such
complex protocols, current programming langueges force
programmers to dstribute aad embed them inside the
interading comporents [14]. Furthermore, the ladk of
means for representing dependencies and protocols for
managing them has resulted in a crrespondng ladk of
theories and systematic taxonamies of interconnedion
dependencies and ways of managing them.

In comporent-based development, the comporents are
usualy pre-existing and fixed, or customizeble in a
limited way. The design focus then lies on integrating
existing comporents to form new systems. The esential

design questions that methoddogies must help answer
beome the foll owing:

e How can we best sded existing comporents to
implement a system’ s functional pieces.

* How can we best manage the interdependencies and
mismatches among the sedleded comporents and
integrate them into a seamless ystem.

In this paper we will focus on the second qlestion.
Traditional methoddogies do nd provide much help with
answering this question because they do nd remgnize
interdependencies as a distinct design entity, nor do they
provide ay systematic guidance for designing
coordination protocols for managing such
interdependencies. As a result, most comporent
integration projeds today are caried ou in an ad-hoc
manner, resulting in frequent time and budgt overruns
and the general perception that comporent integration is
more difficult than it shoud be[5].

As a resporse to the previous observations, this paper
propcses a new perspedive for spedfying and
implementing software systems. This perspedive ca
form the basis for pradicd comporent-based software
development methoddogies. It is based on coordination
theory [12] and applies concepts developed in the Process
Handbook pojed [4, 11]. Unlike arrent pradice our
perspedive anphasizes the eplicit representation and
management of dependencies among software adivities
as digtinct entities. The two main principles of our
perspedive can be stated as follows:

 Explicitly represent software dependencies. Software
systems shoud be described using representations that
clealy separate the mre functiona pieces of an
applicaion from their interdependencies, providing
distinct abstradions for ead.

* Build design handboks of comporent integration. The
field knowledge on comporent integration shoud be
organized in systematic taxonamies that provide
guidance to designers and fadlit ate the generation o
new knowledge. Such taxonamies will caalogue the
most common kinds of interconnedion relationships
encourtered in pradice For ead relationship, they will
contain sets of alternative wordination protocols for
managing it. In that way, they can form the basis for
design handboks of comporent integration, similar to
the well-established handbools that asdst design in
more mature engineaing dsciplines.

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

3. The SyNTHESIS Application Development
Environment

The mordination perspedive on software design
introduced in the previous sdion hes been reduced to
pradice by bulding SYyNTHESIS, an applicéion
development environment based on its principles.
SYNTHESIS is particularly well suited for comporent-
based software development. This dion presents a brief
introdwction to the SYNTHESIS system. A detailed
description can be foundin [3].

The aurrent implementation o SYNTHESIS runs uncer
the Microsoft Windows 3.1 and Windows 95 operating
systems. SYNTHESIS itself has been implemented by
composing a set of comporents developed using dfferent
environments (Intelli corp's Kappa-PC, Microsoft's Visual
Basic, and Shapeware's Visio).

SYNTHESIS consists of three déements:

» SYNOPSS, a software achitedure description language

e an online design handbook & dependencies and
asociated coordination protocols

e a design assstant which generates exeautable
applicaions by successve spedalizaions of their
SYNOPgS s description

3.1 SvyNopsis: An Architecture Description
Language

SYNOPSS suppats graphica descriptions of software
applicaion architedures at both the spedficaion and the
implementation level. The language provides separate
language entities for representing software activities and
dependencies. It adso suppats the mechanism of entity
spedalization. Spedalizaion alows new entities
(adivities and dependencies) to be defined as variations
of other existing entities. Spedalized entities inherit the
demposition and attributes of their parents and can
differentiate themselves by modifying any of those
elements. Spedadlizaion enables the incremental
generation d new designs from existing ores, as well as
the organization o related designs in concise hierarchies.
Finaly, it enables the representation d reusable software
architedures at various levels of abstradion (from very
generic to very spedfic).

Activities

Activities represent the main functional pieces of an
applicaion. They own a set of ports, throughwhich they
interconred with the rest of the system. Ports represent
interfaces through which resources are produced and
consumed by various adivities.

An adivity can optionally decompose into patterns of
simpler adivities and degpendencies which implement the
functionality intended by the composite adivity. An
adivity can have an optional asociation with a code-level
comporent which implements its intended functionality.
Examples of code-level comporents include source ®de
modues, exeautable programs, network services, etc.
SYNOPSS provides a spedal notation for describing the
properties of software @mporents assciated with
adivities.

Activities are distingushed into generic and
exeautable. Exeaitable adivities are adivities which have
either adired asociation to a ade-level comporent, or a
demmposition whose members are dl exeautable.
Generic adivities are adivities that do nd have adired
asciation to a @de-level comporent andor have a
decomposition where & least one member is not
exeautable.

Dependencies

Dependencies describe interconnedion relationships
and constraints among adivities. Like adivities they can
optionally decompose into patterns of simpler
dependencies. They can have optional asociations with
coordination protocols. Coordination potocols are
adivities that introduce the alditional code required in
order to manage their associated dependency.

Like adivities, dependencies are dso dstinguished
into generic and exeautable. Exeaitable (or managed)
dependencies are dependencies which have ather adired
asciation to an exeautable mordination protocol, or a
demmposition whose members are dl exeautable.
Generic (or unmanaged) dependencies are dependencies
that do nd have adired asciation to an exeautable
coordination protocol and/or have adecmposition where
at least one member is not exeautable.

Using the @owe definitions, SYNOPSS can be used
both to describe system spedficaions (sets of generic
adivities and dependencies) as well as gstem
implementations (sets of exeatable adivities and
dependencies). Furthermore, implementations can be
derived from spedficaions by successve spedadlizaions
of generic dements into exeautable. Figure 1 shows an
example of a software agplicaion spedficaion and
implementationin SYNOPSS.

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

Legend i
Activity Start database Start Viewer

Depend
ency

UiGH

[l [l
Iy Iy

bata ow
Select Part |, aé;;l"w \, | Retrieve Part |,/ (Part 1\, Display Part
Numbers Number Description Description Description
ename-

Specification level

¢ Component Start MS Access Start MS Word
(DOS Command) (DOS Command)

Coord
Process

i
Place
precedent in
initialization
module

I

il

Place

precedent in

initialization

module
I

Ll

oTE filename-iq
local variable;
transmit to
consumer using
Visual Basic's
OLE interface

Open file in MS
Word
(Function provided
by Word OLE
interface)

Send part
number using
DDE; wrap
consumer inside
a DDE handle

Send SQL query
to Access
(Visual Basic
procedure)

Select Part
Numbers
(C program)

Implementation level

Figure 1: Representation of a simple file
viewer application using SYNOPSIS.

3.2 A Design Handbook of Software Component
Integration

The aility to represent dependencies and coordination
protocols as distinct entities from the cmporents they
interconned allows the mnstruction d taxonamies that
systematize the field knavledge in integrating software
comporents, and povide guidance for solving such
problems in a routine manner. Such taxonamies $oud
contain:

 a cdalog d the most common kinds of interconnedion
dependencies encourtered in software systems

« for ead kind o dependency, a cdalog o sets of
aternative cordination protocols for managing it

An important dedsion in making a taxonomy of
software interconredion is the coice of the generic
dependency types. If we ae to tread software
interconredion as an othogoral problem to that of
designing the are functiona comporents of an
applicaion, dependencies among comporents soud
represent relationships which are dso orthogoral to the
functional domain of an applicaion. Fortunately, this
requirement is consistent with the nature of most
interconredion poblems. Whether our application is
controlling inventory or driving a nuclea submarine,
most problems related to conreding its comporents
together are related to arelatively narrow set of concepts,
such as resource flows, resource sharing, and timing

dependencies. The design o asociated coordination
protocols invalves a similarly narrow set of medanisms
such as diared events, invocation medianisms, and
communicaion protocols.

After making a survey of existing systems, and
building onealier results of coordination theory [12], we
have based the taxonamy of dependencies presented in
this paper on the aumption that comporent
interdependencies are explicitly or implicitly related to
patterns of resource production and wsage. In ather words,
adivities nedl to interconred with other adivities, either
becaise they use resources produced by dher adivities,
or because they share resources with ather adivities.

Based on this asumption, the most generic
dependency famili esin ou taxonamy include:

e Flow dependencies. Flow dependencies represent
relationships between producers and consumers of
resources. They are spedalized acording to the kind o
resource, the number of prodwcers, the number of
consumers, etc. Coordination protocols for managing
flows decompose into protocols which ensure
accesshility of the resource by the cmnsumers (usualy
by physicdly transporting it acoss a communicaion
medium), usability of the resource (usudly by
performing appropriate data format conversions), as
well as g/nchronization hetween produwcers and
consumers.

Shaing dependencies. They encode relationships
among consumers who e the same resource or
prodwcers who podwe for the same nsumers.
Sharing dependencies are spedalized acording to the
sharing properties of the resource in use (divisihility,
consumability, concurrency). Coordination protocols
for sharing dependencies ensure proper enforcement of
the sharing properties, usually by dviding a resource
among competing wsers, or by enforcing mutual
exclusion grotocols.

Timing dependencies. Timing dependencies express
constraints on the relative flow of control among a set
of adivities. Examples include prerequisite
dependencies and mutual exdusion dependencies.
Timing dependencies are used to spedfy applicaion
spedfic oooperation petterns among adivities which
share the same resources. They are dso used in the
demposition d coordination protocols for flow and
sharing dependencies.

A detailed description d our taxonamy of dependencies
and coordination rocesses can be foundin [3].

Our SYNTHESIS prototype contains an ortline version
of our taxonamy of dependencies and coordination
processs. The design spaces of our taxonamy have been

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

GENERIC EXECUTABLE

\ Increasingly specialized Coordination Processes >

Semaphore
Signaling in
UNIX

Use
Semaphore
Signaling

Synchronization| Semaphore
Signaling in

0s/2

Manage
Prerequisite
Dependency

Create File
upon
Termination

Precedent
Calls
Consequent

Execution

DESIGN Generic
Environment

DIMENSION: Process

’ Type of Event

Figure 2: A hierarchy of increasingly
specialized coordination protocols for
managing prerequisite dependencies.

implemented by Herarchies of increasingly spedalized
SYNOPSS entities. For example, Figure 2 shows a partial
hierarchy of increasingly spedalized processes for
managing [prerequisite dependencies. Each process
contained in the handbookcontains attributes that enable
the system to automaticdly determine whether it is a
compatible candidate for managing a dependency
between a given set of comporents.

3.3 A Design Process for Generating Executable
Applications

SYNTHESIS suppats a process for generating
exeautable systems by successve spedalizaion d their
SyNoPS s descriptions. The processcan be summarized as
follows:

1. Users describe their application wsing SYNOPSS, as a
pattern of adivities conneded through dpendencies.

2. The design asdstant of SYNTHESIS scans the
applicaion description and iteratively does the
following for ead generic (i.e. not exeautable)
applicaion element:

a) It seaches the online design handbook for
compatible spedalizations.

b) It sdleds one of the cmpatible spedalizaions
found either automaticdly, or by asking the user.
If no compatible spedalizaion can be found it
asks the user to provide one.

c) It replacesthe generic goplication element with the
seleded spedadization and reaursively applies the
same processto al elements in the decomposition
of this element.

3. After al application elements have been replacel by
exeautable spedalizaions, the design asdstant
integrates them into a set of modues in ore or more

=i SYNTHESIS ~1=

File_Handbook Page Views Windows

=] Object Bro - Test Design - IN PROGRESS
ol

File Edit Search Options

[Primitive | ——P: Local Varial:
z 1 Same Exec—lbatvara

[Composite | {Transport Res—[Same Host | SharedFie)
N 6o Trarsid

[Different Host—UNIX Socket P

1

Select Files

,,,,,,,,

Vel Y - H
- Locksteh - Retrieve |, |\ Lock
E:>’E’> Flow ﬁ’@‘@ Filename iﬁ L) Fl

rrrrrrrrrr

il

Figure 3: Configuration of SYNTHESIS windows
during the design process

languages and generates an exeautable gplication ou
of the wlledion.

Figure 3 shows the nfiguration o SYNTHESIS
windows during the design process

The &owve design grocessminimizes the manual eff ort
required to integrate software mporents into new
systems. Users only need to participate in the
spedalizaion pocessby making the final seledion when
more than ore @mpatible spedalizaions have been
found In the rare ca&es when no compatible
spedalizaion can be found users neal to provide the
code for such a speddlizaion. Spedalizaions thus
provided become apermanent part of the repository.

4. Using SYNTHESIS to Facilitate Component-
Based Softwar e Development

4.1 Overview

We have tested the capabiliti es of SYNTHESIS by using
it to buld a set of applicaions by integrating
independently written pieces of software. Ead
experiment consisted in:

* describing a test applicéation as a SyNoPSs diagram of
adivities and dependencies

» seleding a set of pre-existing comporents exhibiting
various mismatches to implement adivities

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

Experiment Description Comporents

Results

File Viewer A simple system which
retrieves and dsplays
the @ntents of user-

seleded fil es.

User interface omporent written in | SYNTHESIS integrated comporents siggesting two
C, filename retrieval comporent
written in Visua Basic; filedisplay | invocaion); al necessary coordination code was
comporent implemented using
commercial text editor.

aternative organizations (client/server, implicit

automaticaly generated in bah cases.

Key Word in | A system that produces a | Two alternative implementations for | 3 different combinations of filter and server

Context listing d al circular ead comporent (both writtenin C): | implementations were eat integrated in 3 dfferent
shiftsof all input linesin | asaserver andasaUNIX filter. organizaions (seeTable 2). SYNTHESIS generated
aphabeticd order [18]. most coordination code; users had to manually write

16lines of codein 2 cases

Interactive A system that integrates | Standard exeautable comporents of | Target application was completely described in

TEX the standard comporents | TEX system. SYNOPSS. SYNTHESIS was able to generate

of the TEX document
typesetting systemin a
WY SIWYG ensemble.

coordination code automaticdly.

Collaborative | A system which extends | Micro-Emacs [10] source @dewas | Same system description was gedalized in two
used to implement single-user

Editor the functionality of
existing single user editor.
editorswith group

editing cgpabiliti es[7].

different ways to generate micro-Emacs-based group
editors for Windows and UNIX.

Table 1: Summary of experiments of using SYNTHESIS to facilitate the integration of existing software

components in new applications.

e using the design pocess outlined above to semi-
automaticdly manage dependencies and integrate the
seleded comporentsinto an exeautable system

* exploring aternative exeautable implementations based
on the same set of comporents

The results of our experiments are summarized in
Table 1. Overdl, we used SYNTHESIS to buld 4 test
applicaions. Each application was integrated in at least
two dfferent ways. For example, for one gplicaion we
built one implementation where @mporents were
organized around client/server interadions, and a second
where the same comporents were organized around feea-
to-pee interadions. Thisresulted in atotal of 14 dfferent
implementations. SYNTHESIS was able to buld al 14
implementations, typicadly generating between 30200
lines of additional glue mde in eat case in order to
manage interdependencies and integrate the comporents.
In only 2 cases, users had to manually write 16 lines of
code (eat time), to implement two data @nwversion
routines that were missng from the design handbook
Reference [3] contains a detailed description o our
experiments.

4.2 Example: Building a Collaborative Editor by
I ntegrating Existing Components

This ®dion presents one of our experiments in more
detail . It also serves as an example of how SYNTHESIS can

form the basis for a methoddogy for componrent-based
software development.

In our experiment, we used SYNOPSS to crede a
collaborative ditor architedure, loosely based on the
ideas of Knister and Prakash [7]. Collaborative editors
allow the joint concurrent editing o the same document
by agroup d people. We seleded an existing single-user
editor and mapped the adivities of our architedure to
source @de modues of that system. Then, we used
SyNopgs and its on+line design handbook & coordination
protocols in order to manage the dependencies of our
architedure and integrate the resulting set of comporents
and coordination potocols into an exeautable
collaborative alitor applicaion for Microsoft Windows.
Findly, we reused the same wllaborative dlitor
architedure and used SYNTHESIS in order to generate an
equivalent applicationfor UNIX.

Our collaborative ditor architedure implements a
collaboration grotocol loosely based onthe one presented
in[7]. Thefollowingisabrief description o the protocol:

The protocol is based onthe designation d one of the
participants in an editing sesson as master. Master
participants have mplete aliting capabilities. The
remaining participants are observers, with no editing
cgoabilities. Observers ®e &ery change and cursor
movement made by the master; the observer's cursor isin
"lock-step” with the master's cursor. Observers cannat
perform any operations which change the text. If
attempted, such operations smply have no effed.

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

Collaborative Editor

Lockstep Lockstep =
- Prerequisite

)

Editor Editor

Figure 4 : Top level decomposition of collaborative editor architecture with two participants.

At al times, at most one participant can be the master.

All others are observers. When an editing sesson starts,

Editor there is no master. During that time, any participant can
take ontrol and beme the master by pressing a

designated key-sequence (which might be dlitor-
Read File @7<:Cm:| g ey-seq (9

dependent). During the sesson, a master may relinquish
control by presing another key-sequence Once there is

no master, al participants are once aain allowed to take
control.

Save File

Editor
User
Interface

Each locd editing adivity is then propagated to all
participants. The result is a truly egalitarian mode of

Acquired

Acquire
Master

<@ participants are dlowed to individualy edit their buffers.

collaborative aliting.
Any number of users can participate in a ollaborative
editing sesson. Participants can enter and leave the
@ sesdon at will, smply by starting a quitting their
instance of the aitor program. When a new participant
enters the sesson, if there is a master, the aurrent contents
of the master's buffer are written bad to disk, before they
are loaded into the new participant's buffer. In this way, it
is ensured that the buffer contents of all participants are

Release
Master

During time periods when there is no master, al

Quit Editor

| Send Local [\ . . .

e B Event | @ identical at all times. N _
Event A SyNopss architedure for describing a ollaborative
Loop obal_eve editor system which suppats the llaboration grotocol
described abowe is given in Figure 4. The achitedure
interconreds a set of smpler Editor adivities,
correspondng to individua sesson participants. The
Figure 5: Decomposition of Editor activity. decompasition o Editor adivitiesis givenin Figure 5.

i

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,
July 14-18, 1997

An occurrence of X prevents

An occurrence of Z re-enables further
further occurrences of Y

"~ occurrences of Y

Figure 6: Prevention dependencies.

The operation d the overall system is based ona Flow
dependency for broadcasting a participant’s keystrokes to
al participants, and a set of Prevention dependencies,
eat conreding a participant to al other participants
(except itsdlf). Prevention dependencies belong to the
general family of timing dependencies of our taxonamy.
They spedfy that the occurrence of an adivity X
(enabler) prevents further occurrences of an adivity Y
until a third adivity Z (disabler) occurs, in which case
occurrences of Y arere-enabled (Figure 6).

In ou system, eadh Prevention dependency is
"enabled" whenever a participant acquires master status.
It is "disabled" whenever that same participant releases
master status. It conneds to the Master Exists port of all
other participants. While "enabled", a Prevention
dependency prevents the eeaution do al Editor
subadivities conreced to the Master Exists port of all
participants except the one who aqquired master status.
These subadivities include the &ility to hbroadcast a
participant’s locd keystrokes, as well as the &ility to
aqjuire and release master status. The resulting effed is
that only the aurrent master can make its keystrokes
visible to everyone's locd editor copy and orly the
master can release master status.

Each Editor adivity can be based on an existing
single-user editor comporent. The source ®de of the
editor must be available in order to use it in this g/stem.
The adivities depicted in Figure 5 must be mapped to
source ®@de modues of the single-user editor using the
comporent description language of SyNoPSs (see[3] for
detail s).

In our experiment we used MicroEmacs [10] as our
single-user editor componrent. MicroEmacs is written is C
and its ©urce ®de is avalable for free There exist
versions of the system for both UNIX and Windows
environments.

Each verson o MicroEmacs was “fitted” into ou
generic achitecdure with a minima need for manual
modificaions, very similar to those described in [7]. Then
SYNOPSS was able to manage the same set of

dependencies with coordination protocols gpedfic for
eath exeaution environment in order to generate two
aternative exeautable implementations of the same
system (one for UNIX, one for Windows).

The experiment provided an excdlent example of how
comporent-based software development can fadlit ate the
reuse of software achitedures in order to fadlit ate the
generation d applications for multi ple platforms.

5. Related Work

5.1 The Process Handbook Pr oject

The work reported in this paper grew out of the
Process Handbook pojed a MIT's Center for
Coordination Science [4, 11]. The Process Handbook
projed applies the ideas of coordination theory [12] to the
representation and design o businessprocesses. The goal
of the Process Handbook pojed is to provide afirmer
theoreticd and empiricd foundition for such tasks as
enterprise modeling, enterprise integration, and process
re-engineaing. The projed revolves around a software
toal, cdled the “process handbooK, which contains rich
descriptions of how different organizaions perform
similar processs, including the relative alvantages of the
aternatives. SyNopgs has borrowed the idess of
separating adivities from dependencies and the nation o
entity spedaizaion from the Process Handbook
SYNoOPSS has moved beyond the Process Handbookin
refining the processrepresentation so that it can describe
software gplicdions at a level predse enoughfor code
generation to take place and in defining a repository of
dependencies and coordination potocols for the
spedalized damain of software systems.

5.2 Architecture Description Languages

Architedure Description Languages (ADLSs) provide
suppat for representing software systems in terms of
their comporents and their interconnedions [8, 15]. They
often provide separate abstradions for representing
comporents and their interconredions. SYNOPSS shares
many of the goals and principles of many recent ADLS,
most notably UniCon [16]. However, whereas previously
proposed architedural languages only provide suppat for
implementation-level connedor abstradions (such as a
pipe, or a dient/server protocol), SYNOPSS is the first
language which aso suppats edficaionlevel
abstradions for encoding interconredion relationships
(dependencies). Furthermore, apart from introduwcing a
new architedural language, this work propcses a more
general perspedive on designing systems which aso

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

includes the development of design handbools for
adivities and dependencies as well as adesign processfor
generating exeautable systems by successve
spedalizations of their architedural descriptions.

5.3 Component Frameworks

Comporent frameworks aich as OLE, CORBA,
OpenDoc, etc. [1] fadlitate the interoperation o
independently developed comporents by limiting the
kinds of alowed interadions and by providing a
standardized infrastructure for managing them.

Comporent frameworks and ou coordination
perspedive represent two very different philosophies in
comporent-based software development. Comporent
frameworks, once aain, place the anphasis on
comporents. They provide a fixed infrastructure for
managing comporent interdependencies (middieware)
and require omporents to adhere to a spedfic set of
standards in arder to interoperate.

Our coordination perspedive, in contrast, is based on
the belief that the identification and management of
software dependencies shoud be devated to a design
problem in its own right. Therefore, dependencies shoud
not only be eplicitly represented as distinct entities, but
furthermore, when dedding ona managing protocol, the
full range of posshilities srodd be mnsidered with the
help of design handbools. Comporents in SyNOPSS
architedures need na adhere to any standard and can
have abitrary interfaces. Provided that the right
coordination protocol exists in its repository, SYNTHESIS
will be @le to interconrea them. Furthermore,
SYNTHESIS is able to suggest several dternative ways of
managing an interconredion relationship and thus
possbly generate more dficient implementations. Finally,
open interconredion potocols defined in spedfic
comporent frameworks can be incorporated into
SYNTHESIS repositories as one, out of many, aternative
ways of managing the wunderlying dependency
relationships.

6. Discussion and Future Work

Comporent-based software engineeing bulds new
software systems by integrating existing comporents.
Identifying and properly managing the interdependencies
among comporents becmes a catral concern in this new
paradigm. Software = engineeing methoddogies
spedficdly geaed towards componrent-based
development need to €elevate the representation and
management of interdependencies among software

comporents to a distinct design poblem, entitled to its
own abstradions and design taxonamies.

SYNTHESIS is one such methoddogy and todlset. It is
based onan architedure description language that clealy
separates oftware adivities and dependencies, and ona
design handbookthat contains the most common types of
dependencies encountered in software systems, as well as
sets of alternative mordination processes for managing
them.

The pradicd advantages of SYNTHESIS include:

 Easier integration o code-levd comporents. SYNTHESIS
can take avantage of its on-line design handbook (a
systematic codificaion o field knowvledge in
comporent integration) in order to minimize the neel
for addtional manualy written code to hridge
mismatches and manage dependencies among software
comporents.

» Suppot for rapid multi-platform devéopment. When
applicaions are ported to a new exeaution environment,
their abstrad architedure (adivities and dependencies)
remains unaffeded. The parts most likely to require
modificaion are the mordination protocols that manage
their dependencies. By expresing rew applicdions as
SvyNoPgs diagrams, dependencies can be managed
using aternative mordination protocols in order to
generate mde for multiple platforms beginning from a
single system description. The experiment discussed in
Sedion 42 provided an example of how SYNTHESIS can
be used to generate mde for multiple platforms from a
single SYNOPS S description.

e Sumerior insight into the range of alternative
implementations. The eplicit representation o
dependencies as distinct entiti es which are subsequently
managed by consulting a design hendbook encourages
designers to consider a wide range of aternative ways
of implementing their systems. We ae wnfident that
thiswill result in a more systematic and rational way of
organizing large-scde systems.

» Easier apgication maintenance Designers often need
to change the implementation d adivities, in order to
reflead changes in functional requirements or evolutions
in comporent implementation. Applicaions will be
easlly remnstructed after such changes, by reusing the
same achitedural diagram and simply managing again
the dependencies of the dfeded adivities with the rest
of the system.

Our initial experience with SYNTHESIS has provided
positive evidence to suppat our claims on small-scde
systems. With ou future research we plan to demonstrate
the advantages of our approach as a basis for building and

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,

July 14-18, 1997

maintaining large-scde software systems out of existing

parts.

References

Richaed M. Adler. Emerging Standards for
Comporent Software. IEEE Computer, March 1995
pp. 68-77.

T. J Biggerstaff and A. J Pelis. Sdtware
Reusahility. Volumes 1 and 2 ACM PresgAddison
Wesley, 1989

Chrysanthos Dellarocas. A Coordination Perspedive
on Sdtware Architedure: Towards a Design
Handbod for Integrating Sdtware Comporents
(Ph.D. Thesis). MIT Center for Coordination Science
Working Paper #193 February 1996 Also available
from http://ccs.mit.edw/'ccswpl93main.html

C. Dellarocas, J. Lee T. W. Maone, K. Crowston and
B. Pentland. Using a Process Handbook to Design
Organizdiona Proceses. In Procealings, AAA
Sping §mposium on Computationd Organization
Design, March 21-23, 1994 Stanford, CA, pp. 50-56.
D. Garlan, R. Allen and J. Ockerbloom. Architecural
Mismatch or Why it's hard to buld systems out of
existing parts. In Procealings, 17th Internationd
Conference on Sdtware Engineging, Sedtle WA,
April 1995

T. Capers JDbnes. Reusability in Programming: A
Survey of the State of the Art. IEEE Transactions on
Sdtware Engineging, Vol. 10, No. 5, September
1984 pp. 488494

M. J Knister and A. Prakash. DistEdit: A
Distributed Toolkit for Suppating Multiple Group
Editors. In Procealings, CSCW 90, Los Angeles, CA,
October 1990 pp. 343355

8.

10.

11

12

13.

14.

15.

16.

Paul Kogu and Paul Clements. Feaures of
Architedure Representation Languages. Carnegie
Mellon University Technicd Repot CMU/SEI.
Number to be adgned. Draft of Decanber 1994
Charles W. Krueger. Software Reuse. ACM
Computing Suiveys, Vol. 24, No. 2, June 1992 pp.
131-183

D. M. Lawrence and B. Straight. MicroEmacs Full
Screen Text Editor Reference Manud, version 310,
March 1989

T.W. Maone, K. Crowston, J. Lee ad B. Pentland.
Tods for Inventing Organizdions. Toward a
Handbook & Organizaiond Proceses, In
Procedlings, 2nd IEEE Workshop onEnalding Tech.
Infrastructure for Collabarative Enterprises, April
20-22,1993

Thomas W. Maone axd Kevin Crowston. The
Interdisciplinary Study d Coordination. ACM
Computing Suiveys, Vaol. 26, No. 1, March 1994 pp.
87-119

D. L. Panas. On the Criteria to Be Used in
Demomposing Systems Into Modues.
Comnunications of the ACM, Vol. 15 No. 12,
Decamber 1972 pp. 10531058

Mary Shaw. Procedure Calls Are the Assmbly
Languege of Software Interconnedion: Conredors

Deserve Firg-Class Status. Carnegie Meélon
University, Tednicd Repot CMU-CS-94-107.
January 1994

Mary Shaw and David Garlan. Charaderistics of
Higher-level Languages for Software Architedure.
Tedhnicd Report CMU-CS-94-210. Also appeas as
CMU/SEI-94-TR-23, ESC-TR-94-023

Mary Shaw, Robert Deline, and Danid Klein.
Abstradions for Software Architedure and Todls to
Suppat Them. IEEE Transadions of Software
Engineaing 21 4, April 1995 pp. 314335

Presented at the 8" Internationa Workshop on Stiware Techndogy and Engineering Practice (STEP 97), London UK,
July 14-18, 1997

