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Abstract. This paper addresses a simple but critical question: how can we create robust multi-agent systems out

of the often unreliable agents and infrastructures we can expect to find in open systems contexts? We propose an

approach to this problem based on distinct exception handling (EH) services that enact coordination protocol-

specific but domain-independent strategies to monitor agent systems for problems (‘exceptions’) and intervene

when necessary to avoid or resolve them. The value of this approach is demonstrated for the ‘agent death’

exception in the Contract Net protocol; we show through simulation that the EH service approach provides

substantially improved performance compared to existing approaches in a way that is appropriate for open multi-

agent systems.
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1. The challenge: enabling robust open multi-agent systems

This paper addresses one simple question: how can we develop robust multi-agent systems

out of the often unreliable (buggy, malicious, or simply ‘‘dumb’’) agents and infra-

structures we can expect to encounter in open system contexts? This is becoming an

increasingly critical question because of emerging changes in the way human organiza-

tions work. Globalization, enabled by ubiquitous telecommunications, has increasingly

required that organizations be assembled and re-configured within small time frames, often

bringing together partners that have never worked together before. Examples of this

include international coalition military forces, disaster recovery operations, open electronic

marketplaces and virtual supply chains [1–3]. Multi-agent systems (MAS) represent one

of the most promising approaches for supporting these kinds of applications, because of

their ability to use multi-agent coordination protocols to dynamically self-organize

themselves as their problems and constituent agents change [4, 5]. A critical open

challenge remains, however. The vast majority of MAS work to date has considered

closed systems with well-behaved agents running on reliable infrastructures [6], in contrast

to the open and potentially unreliable contexts most applications present. For these

contexts we can expect, in contrast, to find:
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x Unreliable Infrastructures. In large distributed systems like the Internet, unpredictable

host and communication problems can cause agents to slow down or die unexpectedly,

messages to be delayed, garbled or lost, etc.

x Non-compliant agents. In open systems, agents are developed independently and thus

can not always be trusted to follow the rules, especially in where there may be

significant incentives for fraud or malice.

x Emergent dysfunctions. Most multi-agent coordination mechanisms are susceptible to

emergent dynamical dysfunctions, such as chaotic behavior [7–10].

All of these departures from ‘‘ideal’’ multi-agent system behavior can be called

exceptions, and the results of inadequate exception handling include the potential for

poor performance, system shutdowns, and security vulnerabilities.

2. Our approach: distinct domain-independent exception handling services

It is certainly imaginable that agents could be individually elaborated so that they could

handle all exceptions they are apt to face, and most MAS exception handling research has

in fact taken this direction. This ‘‘survivalist’’ approach to multi-agent exception handling

faces, however, a number of serious shortcomings. It greatly increases the burden on agent

developers by requiring the implementation of potentially complicated and carefully

coordinated exception handling behaviors in all agents. Developers must anticipate and

correctly prepare for all the exceptions the agent may encounter, which is problematic at

best since the agent’s operating environments may be difficult to anticipate. Making

changes in exception handling behavior is difficult because it potentially requires

coordinated changes in multiple agents created by different developers. Agents become

harder to maintain, understand and reuse because a potentially large body of exception

handling code obscures the relatively simple normative behavior of an agent.

Perhaps more seriously, this approach can result in poor exception handling perform-

ance. In open systems it is always possible that some agents will not comply properly with

these more sophisticated protocols or may violate some of their underlying assumptions.

Some exception handling approaches, for example, are based on game-theoretic incentive

analyses [11] that assume all agents are fully rational and share a particular class of utility

function (typically profit maximization), but this obviously may not always be the case.

Some agents may be buggy, face severe computational limitations that preclude full

rationality, or have radically different utility functions (e.g. cause as much damage to a

particular vendor as possible). All agent interactions are potentially slowed down by the

overhead incurred by the more heavyweight ‘exception-savvy’ protocols. Some kinds of

interventions (such as ‘‘killing’’ a broken or malicious agent) may in addition be difficult

to implement because the agents do not have the established legitimacy needed to apply

such interventions to their peers. Finally, finding the appropriate responses to some kinds

of exceptions (notably emergent exceptions) often requires that the agents achieve a more

or less global view of the multi-agent system state, which is notoriously difficult to create

without heavy bandwidth requirements.

It is in order to address these limitations that we have been defining an approach that

enhances MAS robustness by offloading exception handling from problem solving agents
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to distinct, domain-independent services. We call this the ‘‘citizen’’ approach by analogy

to the way exceptions are handled in human society. Citizens typically adopt relatively

simple and optimistic rules of behavior, and rely on a whole host of social institutions (the

police, lawyers and law courts, disaster relief agencies, the Security and Exchange

Commission, the Better Business Bureau, and so on) to handle most exceptions. This is

generally a good tradeoff because such institutions are able, by virtue of specialized

expertise, widely accepted legitimacy, and economies of scale, to deal with exceptions

more effectively and efficiently than individual citizens, while making relatively few

demands (e.g. pay your taxes, obey police officers, report crimes).

The key insight underlying the ‘‘citizen’’ approach is the simple but powerful notion

that highly reusable, domain-independent exception handling expertise can be usefully

separated from the knowledge used by agents to do their ‘‘normal’’ work. There is

substantial evidence for the validity of this claim. Early work on expert systems

development revealed that it is useful to separate domain-specific problem solving and

generic control knowledge [12, 13]. Analogous insights were also confirmed in the

domains of collaborative design conflict management [14, 15] and workflow exception

management [16]. In our work to date we have found that every coordination protocol has

its own characteristic set of domain-independent exceptions, which in turn can be mapped

to domain-independent strategies potentially applicable for handing (anticipating and

avoiding, or detecting and resolving) them. We shall see some examples of such strategies

below; for others please see [17, 18].

3. Case study: handling agent death in the contract net protocol

Let us illustrate this approach by considering how it can be applied to an important

scenario: handling agent death in the Contract Net protocol (CNET), a widely-used

market-based task allocation protocol [19]. CNET operates as follows (Figure 1):

Figure 1. A simple version of the Contract Net protocol.
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An agent (hereafter called the ‘‘contractor’’) identifies a task that it cannot or chooses

not to do locally and attempts to find another agent (hereafter called the ‘‘subcontractor’’)

to perform the task. It creates a Request For Bids (RFB) which describes the desired work,

and then sends it to potential subcontractors (typically identified using a matchmaker that

indexes agents by the skills they claim to have). Interested subcontractors respond with

bids (specifying such issues as the time needed to perform the task) from which the

contractor selects a winner. The winning agent, once notified of the award, performs the

work (potentially subcontracting out its own subtasks as needed) and submits the results to

the contractor. CNET is prone to a wide range of potential exceptions from all three of the

categories described above [20].

Let us consider what happens when a CNET agent ‘dies’. Agent death can be common

in a large distributed system: even the most carefully crafted code has been estimated to

include an average of three bugs, mostly intermittent ones, per 1000 lines of code [21]. If a

CNET agent dies there are several immediate consequences. If the agent is acting as a

subcontractor, its customer will not receive the results it is expecting. In addition, if the

agent has subcontracted out one or more subtasks, these subtasks and all the sub-sub-. . .
tasks created to achieve them become ‘‘orphaned’’, uselessly tying up potentially scarce

resources. Finally, if the system uses a matchmaker, it will continue to offer the now dead

agent as a candidate (a ‘‘false positive’’), resulting in wasted message traffic and a

misleading picture of what skills are available in the MAS. CNET agent death presents a

surprisingly rich source of challenges and helps reveal, we believe, many of the important

issues involved in exception handling in open agent systems.

The standard mechanism used to handle agent death in CNET is a classic ‘‘survivalist’’

approach: timeout/retry. If no results are received by the deadline the subcontractor

promised, a contractor will re-start the subcontracting process for that task, sending a new

RFB. This approach does work but rather inefficiently, since it does not eliminate

orphaned tasks, does not remove false positives from the matchmaker, and is prone to

an ‘‘timeout cascade’’ effect, wherein the death of an agent performing a subtask can cause

cascading timeouts and retries for its customers, the customers of its customers, and so on,

resulting in needless delays and wasted work.

Contrast this with a ‘‘citizen’’-style approach to handling the agent death exception. In

our implementation of this approach, when an agent joins the MAS, the EH service begins

periodic polling of the agent. If an agent dies (does not respond to polling in a timely way),

the EH service takes a series of coordinated actions to resolve the problem

� It notifies the matchmaker that this agent is dead and should therefore be removed from

the list of available subcontractors. This handles false matchmaker positives.
� If the dead agent was performing tasks for some customer(s), the EH service

immediately asks these customers to re-allocate the tasks assigned to the dead agent.

This avoids the ‘‘timeout cascade’’ effect described above, since contractors only

reallocate tasks when the subcontractor has actually died.
� If the dead agent had allocated tasks to other agents, the EH service tries to find new

customers for these orphaned tasks by acting as a proxy. The proxy waits for an RFB

for the orphaned tasks, and submits a bid that is likely to be highly competitive since

the tasks are either already in process or actually completed. This is a reasonable

strategy in domains where there is a standardized task decomposition, so the

KLEIN, RODRIGUEZ-AGUILAR AND DELLAROCAS182



replacement for the dead agent is apt to require the same subtasks that the dead agent

did. If the proxy wins the anticipated RFB, it forwards task results as they are

generated. Otherwise it keeps responding to RFBs until it wins or the task results

become obsolete. This strategy thus minimizes the work wasted on orphaned tasks. In

domains where the proxy approach in inappropriate (e.g. results get obsolete very

quickly, or there is no standard task decomposition) the EH service can simply kill all

orphaned tasks.
� An agent reliability database is notified so it can keep up to date information about the

mean time between failures for each agent type.

The EH service can also help avoid agent death problems exception via bid filtering.

Whenever a contractor sends out an RFB, the EH service can transparently filter out the

bids that come from the most failure-prone of the bidders, thereby reducing the probability

that a task will be assigned to an agent that dies during its enactment.

The EH service makes two assumptions about agents in order to provide these

capabilities. One is that it can transparently monitor and, if necessary, modify the

domain-independent aspects (message types as well as task and agent IDs) of all inter-

agent messages. This is straightforward to achieve if the EH service is realized using

‘‘sentinels’’ integrated into the communications infrastructure (Figure 2).

In this architecture, every agent (including the matchmaker if any) is ‘‘wrapped’’ with a

sentinel through which all of its in- and out-going message traffic is routed. Sentinels can

communicate with each other as well as with the agent reliability database. The distributed

nature of this architecture allows us to avoid performance and reliability bottlenecks. The

overhead of passing messages through sentinels can be minimized if sentinels are located

on the same hosts as their agent ‘‘clients’’. Most EH messages go between a client and its

sentinel; messages are interchanged between sentinels only when killing orphaned tasks.

Figure 2. Sentinel architecture for EH service.
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The reliability database is accessed only when an agent dies or a sentinel is filtering a set

of bids, and standard distributed database techniques can be used to avoid bottlenecks and

reliability problems in accessing/updating this information [21]. Sentinel death can be

dealt with using techniques such as that described in [22].

The second assumption is that, when agents enter a multi-agent system supported by the

EH service, they indicate the kinds of exception handling behavior they can support. This

‘EH signature’ specifies for that agent how agent death can be detected (i.e. whether or not

that agent responds to the ‘‘are you alive?’’ message), how dead subcontractor problems

are resolved (i.e. whether or not an agent responds to the ‘‘resend RFB’’ message), how

dead customer problems are resolved (i.e. whether the agent allows orphaned task

proxying and/or responds to the ‘‘cancel task’’ message), and how dead subcontractor

problems are avoided (i.e. whether or not the agent allows bid filtering). ‘Full’ citizens

support all options, while pure survivalists support none. Other agent types come

somewhere in between. This allows the EH services to account for the agent heterogeneity

we can expect to find in open systems.

Note that we are not claiming that this particular architecture and set of agent death

handling strategies is the optimal, or even the only way in which agent death can be

offloaded to an EH service. Our claim, rather, is that, at least for this particular exception,

the citizen approach can provide significant advantages over survivalist approaches to

exception handling in open multi-agent systems.

4. Evaluating the exception handling services approach

We ran a series of experiments to test this claim in a multi-agent system running the CNET

protocol. The experiments all take place in a discrete event based MAS simulator built on

top of the Swarm Simulation System [23]. The scenario consists of several dozen CNET

agents, one per host, interacting over a reliable network. Contractor agents send out an

RFB with a specified timeout period: potential subcontractors bid only if they become

available during this period (i.e. subcontractors perform only one task at a time). Bids are

binding, which means that subcontractors will bid on a new RFB only after the timeout for

its pending bid expired without an award being received (presumably because some other

subcontractor won the task). Contractors select the winning bids based solely on how

quickly the bidders claimed they could perform the task. Contractors re-send RFBs if no

bids have been received by the timeout period (presumably because no subcontractors with

the needed skills were available at that time). This CNET protocol is modeled on the one

described in [19] and was chosen because it is simple and was shown to represent a

reasonable design tradeoff in several test domains.

Figure 3. Summary of agent configurations tested.
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We designed the experiments to evaluate exception handling performance in a range of

domain types. Three independent variables were selected to capture what we judged to be

key domain-dependent elements affecting exception handling performance: task tree

topology, task length, and agent scarcity. Task completion performance was measured

for four different agent configurations, whose parameters are summarized in Figure 3:

In all of these configurations there were three top-level contractors, each executing a

loop wherein they announce a new top-level task, wait for bids, award the contract to the

best bidder, wait to receive the results and then repeat the above steps. Every top-level task

involved the completion of task trees with depth 4 and branching factor 2, thereby

requiring the combined contribution of 15 agents (Figure 4),

This allowed us to study the effects of the EH service for tree topologies of differing

depths, ranging from ‘‘flat’’ (one level of decomposition, as in a client-server setup) to

‘‘deep’’ (three levels of decomposition, as we might expect to find in more complex

information supply chains). Tree width was not varied because it does not affect total task

completion time for any particular agent death instance. To simplify the experiment, all

subcontractors were capable of performing any task in a given task tree.

In our initial set of experiments, three simulation runs were performed for each of the

four configurations described above:

� Failure-free environment (baseline case)
� Failure-prone environment, ‘‘survivalist’’ agents using timeout/retry.
� Failure-prone environment, ‘‘citizen’’ agents fully supported by the EH services

In the failure-prone cases, subcontractor agents were divided into three reliability

classes. All subcontractor agents had a ‘‘lifespan’’ (time until death) selected randomly

from a geometric distribution with mean time between failures (MTBF) equal to 10

times the task duration for low reliability agents, 50 times the task duration for medium

reliability agents, and 100 times the task duration for high reliability agents. When an

agent dies, a new one with the same skills and reliability class but a different unique ID

is created and registered with the matchmaker. This is done to keep the subcontractor

population from shrinking over the course of the experiment, thereby emulating a large

and dynamic agent pool where the population of subcontractors remains roughly

constant. All simulations were run until a 90% confidence interval could be computed

for each of the completion time estimates with a width of less than 15 percent of the

estimated mean.

Figure 4. Top-level tasks require the creation of a 4-level task tree.
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Figure 5 below summarizes the mean task completion times for deep task trees,

normalized relative to the failure-free (baseline) case, for survivalist and citizen agents

in each of the four agent configurations described above.

As expected, citizen agents supported by the EH services produced faster task

completion times than survivalist agents. In the deep tree case shown above, mean

completion times for citizen agents were as much as 3.4 times faster than for survivalist

agents. Remarkably, citizen agents gave times for failure-affected trees no more than 27%

longer than the failure-free mean. The advantage of citizen agents was much less dramatic

for shallow task trees (not shown above): they were only about 50 to 60% faster than

survivalist agents. This is because the ‘timeout cascade’ effect that plagues survivalist but

not citizen agents only appears for deeper task decompositions. The size of the citizen

advantage was only mildly affected by task length and subcontractor scarcity for the

configurations tested.

We also noted that citizen agents had, for most conditions, a much smaller variation in

task completion times than did survivalist agents (Figure 6):

The variance reduction represents, we believe, a significant benefit since in many

environments we can expect that consistency will be equally as important as efficiency.

The benefits of the citizen approach are achieved in a way that is well-suited to open

multi-agent systems. Recall that the most salient aspect of open systems is that we can

make only minimal assumptions about the agents that compose it, since they were not

developed under centralized control. Agents are thus likely to be heterogeneous with

respect to their exception handling behavior. The EH service can work with a broad range

of such behaviors by using the ‘EH signature’ concept described above. It requires at most

that agents support three very simple directives (‘‘are you alive?’’, ‘‘resend RFB’’, and

Figure 5. Normalized mean task completion times.
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‘‘cancel-task’’) and can provide significant support for agents (e.g. survivalists) that

implement none of these messages, since bid filtering and orphaned task proxying operate

in a way that is completely transparent to the affected agents. The EH service can use

timeouts to detect agent death if the agent does not support the ‘‘are you alive?’’ message,

avoiding timeout cascades by being aware of the inter-agent task commitment structure.

The EH service can notify an agents’ customer to resend an RFB if the agent itself does

not support the ‘‘resend-RFB’’ message. Finally, if an agent does not support ‘‘cancel-

task’’, at worse we are unable to avoid wasting some computational resources. We can

expect that the degree of benefits derived from the EH service will be a function of which

subset of the full ‘EH signature’ the agents support, which is born out by our experiments

(Figure 7):

These experiments explored the mean task completion time performance for the ‘‘long

tasks, abundant subcontractors, deep trees’’ configuration for agents that support differing

subsets of the maximal EH contract, normalized relative to the failure free case. As we can

see, mean completion times decrease as the scope of the EH signature supported by the

agent increases: the ‘full citizen’ (with polling, proxying and bid filtering) is the fastest.

5. Contributions of this work

Narrowly construed, this work offers improved failure tolerance in open MAS. Almost

all previous efforts in the MAS community have taken a ‘‘survivalist’’ approach, or (e.g.

[6, 24–27]) have been specific to a small range of exceptions or coordination mechanisms.

More general techniques (notably mirroring and rollbacks [28, 29]) from the distributed

systems community are not well suited to open systems in that they assume cooperative

behavior by all agents (e.g. that agents mirror their state or cooperate with rollback

Figure 6. Normalized standard deviations of task completion times.
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directives) and can be inefficient (full rollbacks discard already completed work). Our

approach avoids these limitations. More broadly speaking, this work presents a detailed

example of the potential value of a domain-independent EH services approach to

increasing robustness in open agent systems.

6. Future work

We are pursuing two concurrent lines of work: [1] defining techniques for handling other

important exception types, particularly in market-based mechanisms, and [2] exploring

diagnosis techniques suited for open systems where agents are black boxes and may lie.
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