
Information Technology and Management 1 (2000) 155–169 155

A knowledge-based approach for handling exceptions
in business processes

Chrysanthos Dellarocas and Mark Klein
Center for Coordination Science, Sloan School of Management, Massachusetts Institute of Technology,

Room E53-315, Cambridge, MA 02139, USA
E-mail: {dell;m klein}@mit.edu

This paper describes a novel knowledge-based methodology and toolset for helping busi-
ness process designers and participants better manage exceptions (unexpected deviations
from an ideal sequence of events caused by design errors, resource failures, requirement
changes, etc.) that can occur during the enactment of a process. This approach is based on
an on-line repository exploiting a generic and reusable body of knowledge, which describes
what kinds of exceptions can occur in collaborative work processes, how these exceptions
can be detected, and how they can be resolved. This work builds upon previous efforts
from the MIT Process Handbook project and from research on conflict management in
collaborative design.

Keywords: business process modeling, business process reengineering, exception handling,
knowledge-based systems, operational risk management

1. Introduction

Business process models typically describe the “normal” flow of events in an
ideal world. For example, the model of a product development process typically
includes a “design product” activity, followed by a “build product” activity, which, in
turn, is followed by a “deliver product” activity. Reality, however, tends to be more
complicated. During the enactment of a business process a lot of exceptions, that
is, deviations from the ideal sequence of events, might occur. For example, product
design might prove to be inconsistent with the capabilities of the manufacturing plant.
Manufacturing stations might break down in the middle of jobs. Delivery trucks might
go on strike. To assure that a process is still able to fulfill its organizational goals,
process participants must be able to detect, diagnose and successfully resolve such
exceptional conditions as they occur.

Traditionally, managers have been relying on their experience and understanding
of a process in order to handle deviations from the expected flow of events. How-
ever, the rising complexity of modern business processes and the accelerating pace
with which these processes evolve and change has made the reliance on individual
managers’ experience and intuition an increasingly less satisfactory way to deal with
exceptions. There is an increasing need for systematic business process operational

 Baltzer Science Publishers BV

156 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

risk management methodologies. Such methodologies will assist business process
designers to anticipate potential exceptions and instrument their processes so that ex-
ceptions can either be avoided or be detected on time. Furthermore, when exception
manifestations occur during process enactment, the same methodologies will assist in
selecting and instantiating the best way of resolving them.

Business process modeling has been used successfully in order to increase under-
standing, facilitate analysis and enhance communication among the various stakehold-
ers involved in the design and enactment of an “ideal” business process. Our position
is that analogous model-based tools can form the basis of systematic methodologies
for operational risk management.

The standard approach of incorporating exception handling in process models
has been to try to anticipate beforehand all possible exceptional conditions that might
arise and augment an “ideal” process model with additional conditional elements that
represent exception handling actions. This approach, however, is problematic for a
number of reasons. First, it results in cluttered, overly complex, models, which hinder
instead of enhancing understanding and communication. Second, the anticipation of
possible failure modes once again relies on the experience and intuition of the model
designers. Third, the approach cannot help with exceptions that have not been explicitly
hard-coded into the model.

This paper describes a knowledge-based approach for handling exceptions in
business processes. Rather than requiring process designers to anticipate all possible
exceptions up front and incorporate them into their models, this approach is based on
a set of novel computerized process analysis tools, which assist designers to analyze
“ideal” process models, systematically anticipate possible exceptions and suggest ways
in which the “ideal” process can be instrumented in order to detect or even to avoid
them. When exception manifestations occur, the same tools can be used to diagnose
their underlying causes, and suggest specific interventions for resolving them. The
approach is based on an extensible knowledge base of generic strategies for avoiding,
detecting, diagnosing and resolving exceptions.

The remainder of the paper is structured as follows: section 2 provides an
overview of the proposed approach. Section 3 describes how the approach has been
successfully applied to analyze operational risks of the Barings Bank trading processes.
Section 4 discusses related work. Finally, section 5 reports on the current status of
this work and presents some directions for future work.

2. A knowledge-based approach to exception handling

2.1. Anticipating and preparing for exceptions

The first step in our approach assists process designers to anticipate, for a given
“ideal” process model, the ways that the process may fail and then instrument the
process so that these failures can be detected or avoided. The principal idea here
is to compare a process model against a taxonomy of elementary process elements

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 157

Table 1
A subset of exception causes.

Exceptions related to Goals contain conflicts or inconsistencies
goals and assumptions Unanticipated requirement changes violate assumptions

Exceptions related to Wrong process selected for stated goals
activities Process contains design flaws

Process contains intrinsic possibilities of conflicts, deadlock, etc.

Exceptions related to Wrong resource assigned to task
resources Resource unavailable

Resource fails in the middle of task

annotated with possible failure modes. Our idea is motivated by the observation that
the causes of most process failures have a straightforward association with one of the
four principal elements of business process models: activities, resources, underlying
goals and assumptions. Table 1 lists some examples.

A process element taxonomy can be defined as a hierarchy of process element
templates, with very generic elements at the top and increasingly specialized elements
below. For example, figure 1 depicts a small activity taxonomy. Each activity can
have attributes, e.g., that define the challenges for which it is well-suited. Note that
activity specialization is different from decomposition, which involves breaking an
activity down into subactivities. While a subactivity represents a part of a process; a
specialization represents a “subtype” or “way of” doing the process [10]. Resource,
goal and assumption taxonomies can be defined in a similar manner.

Process element templates are annotated with the ways in which they can fail, i.e.,
with their characteristic exception types. Failure modes for a given process template can
be uncovered using failure mode analysis [11]. Each process element in a taxonomy
inherits all characteristic failure modes of its parent (generalization) and may contain
additional failure modes which are specific to it.

Figure 1. An example of a generic activity taxonomy with failure modes.

158 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

Figure 2. An example “Ideal” process model.

Given an “ideal” process model, to identify failure modes we need only identify
the generic process element templates that match each element (activity, resource,
goal, assumption) of the model. The potentially applicable exception types will then
consist of the union of all failure modes inherited from the matching templates. We
can see, for example, that the “distribute shared design resources” activity in figure 2
is a subtype of the generic “pull-based sharing” process template in figure 1, since
the resources are “pulled” by their consumers rather than “pushed” (i.e., allocated)
by their producers. This template includes among its characteristic failure modes
the exception called “poaching”, wherein resources go disproportionately to lower
priority tasks because agents with lower priority tasks happen to reserve them first.
The “deliver product” activity is a specialization of the “manage flow” template, with
characteristic exceptions such as “item delayed”, “item misrouted” and so on. All
activities also inherit the characteristic failure modes from the generalizations of these
matching templates, such as “responsible agent is unavailable”, and so on.

The process designer can select, from this list of possible exception types, the
ones that seem most important in his/her particular context. He/she might know, for
example, that the “deliver product” process is already highly robust and that there is
no need to augment it with additional exception handling capabilities.

For each exception type of interest, the process designer can then decide how
to instrument the process in order to detect these exceptions. While processes can
fail in many different ways, such failures have a relatively limited number of different
manifestations, including missed deadlines, violations of artifact constraints, exceeding
resource limits, and so on. Every exception type includes pointers to exception detec-
tion process templates in the process taxonomy that specify how to detect the symptoms
manifested by that exception type. These templates, once interleaved into the “ideal”
process model by the workflow designer, play the role of “sentinels” that check for
signs of actual or impending failure. The template for detecting the “resource poach-
ing” exception, for example, operates by comparing the average priority of tasks that
quickly receive shared resources against the average priority of all tasks. The “item
delayed”, “agent unavailable”, and “item misrouted” exceptions can all be detected
using time-out mechanisms. Similar pointers exist to exception avoidance processes,
whose purpose is to try to prevent the exceptional condition from occurring at all.

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 159

2.2. Diagnosing exceptions

When exceptions actually occur during the enactment of a process, our tools can
assist process participants in figuring out how to react. Just as in medical domains,
selecting an appropriate intervention requires understanding the underlying cause of
the problem, i.e., its diagnosis. A key challenge here, however, is that the symptoms
revealed by the exception detection processes can suggest a wide variety of possi-
ble underlying causes. Many different exceptions (e.g., “agent not available”, “item
misrouted” etc.) typically manifest themselves, for example, as missed deadlines.

Our approach for diagnosing exception causes is based on heuristic classifica-
tion [2]. It works by traversing a diagnosis taxonomy. Exception types can be arranged
into a taxonomy ranging from highly general failure modes at the top to more specific
ones at the bottom; every exception type includes a set of defining characteristics that
need to be true in order to make that diagnosis potentially applicable to the current
situation (figure 3).

When an exception is detected, the responsible process participant traverses the
exception type taxonomy top-down like a decision tree, starting from the diagnoses
implied by the manifest symptoms and iteratively refining the specificity of the diag-
noses by eliminating exception types whose defining characteristics are not satisfied.
Distinguishing among candidate diagnoses will often require that the user get addi-
tional information about the current exception and its context, just as medical diagnosis
often involves performing additional tests.

Imagine, for example, that we have detected a time-out exception in the “deliver
product” step (see figure 2). The diagnoses that can manifest this way include “agent
unavailable”, “item misrouted”, and “item delayed”. The defining characteristics of
these exceptions are:

• agent unavailable: agent responsible for task is unavailable (i.e., sick, on vacation,
retired, etc.);

• item misrouted: current location and/or destination of item does not match original
target destination;

• item delayed: item has correct target destination but is behind original schedule.

Figure 3. A subset of the exception type taxonomy.

160 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

The user then has a specific set of questions that he/she can ask in order to narrow
down the exception diagnosis. If the appropriate information is available on-line, then
answering such questions and thereby eliminating some diagnoses can potentially be
automated.

2.3. Resolving exceptions

Once an exception has been detected and at least tentatively diagnosed, one is
ready to define a prescription that resolves the exception and returns the process to a
viable state. This can be achieved, in our approach, by selecting and instantiating one
of the generic exception resolution strategies that are associated with the hypothesized
diagnosis. These strategies are processes like any other, are captured in a portion of
the process taxonomy, and are annotated with attributes defining the preconditions that
must be satisfied for that strategy to be applicable. We have accumulated roughly 200
such strategies to date, including for example:

• IF a process fails, THEN try a different process for achieving the same goal;

• IF a highly serial process is operating too slowly to meet an impending deadline,
THEN pipeline (i.e., release partial results to allow later tasks to start earlier) or
parallelize to increase concurrency;

• IF an agent may be late in producing a time-critical output, THEN see whether
the consumer agent will accept a less accurate output in exchange for a quicker
respons;

• IF multiple agents are causing wasteful overhead by frequently trading the use of
a scarce shared resource, THEN change the resource sharing policy such that each
agent gets to use the resource for a longer time;

• IF a new high-performance resource applicable to a time-critical task becomes
available, THEN reallocate the task from its current agent to the new agent.

Since an exception can have several possible resolutions, each suitable for dif-
ferent situations, we use a procedure identical to that used in diagnosis to find the
right one. Imagine, for example, that we want a resolution for the diagnosis “agent
unavailable”. We start at the root of the process resolution taxonomy branch associated
with that diagnosis (figure 4).

Three specific strategies are available, with the following preconditions and ac-
tions:

Figure 4. A fragment of the resolution process taxonomy.

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 161

• wait till agent available: IF the original agent will be available in time to complete
the task on the current schedule THEN wait for original agent to start task;

• find new agent with same skills: IF another agent with the same skills is available,
THEN assign task to that agent;

• change task to meet available skills: IF the task can be performed a different way
using agents we have currently available THEN modify and re-assign.

The system user can prune suggested strategies based on which preconditions are
satisfied, and enact or customize a strategy selected from the remainder. Note that the
substantial input may be needed from the user in some cases in order to instantiate a
strategy into specific actions.

2.4. Summary

Figure 5 summarizes the knowledge structure which serves as the basis of the
approach described in the previous sections. It consists of two cross-referenced tax-
onomies: a specialization taxonomy of process model entities (activities, resources,
goals, assumptions) and a taxonomy of exception types.

During process design time, process models are compared against the process
taxonomy in order to identify possible failure modes. Once failure modes are identified,
the exception type taxonomy provides links to appropriate detection and avoidance
processes. During process enactment time, exception manifestations are compared
against the exception type taxonomy in order to identify possible diagnoses. Once
plausible diagnoses have been identified, the exception taxonomy provides links to
resolution processes.

Figure 5. Overview of exception handling knowledge structures.

162 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

3. Case study: Barings Bank

The approach described in the previous section can be applied in order to help
design robust new processes. It can also be a helpful tool when testing the robustness
of existing business processes. This section illustrates how the method has been used
in order to systematically expose potential dangers (and suggest possible fixes) in a
well-known case of a failed business process.

In February 1995, 233-year old Barings Bank, one of the oldest and most re-
spected investment houses in the United Kingdom, went bankrupt. The entire bank
collapsed because of losses of $1.4 billion incurred in a matter of days by a single
young trader, Nicholas Leeson. Nicholas Leeson was a futures trader in the Singapore
branch of the bank. For a number of reasons, which are still not entirely clear, Leeson
began to engage in unauthorized futures trading in the Singapore exchange. Due to
inadequate internal controls and other process failures, Leeson was able to maintain his
unauthorized and highly risky activity undetected by the bank headquarters in London
until the very end.

The collapse of the Barings Bank is one of the most dramatic and talked about
recent disasters in financial markets. There exist several detailed accounts and analyses
of why and how it happened (for example, [5,12]). From our perspective, the Barings
disaster is interesting because it was the result of a series of undetected exceptions
in one of the bank’s secondary business processes: the futures trading process in
Singapore.

In this section, we will demonstrate how the approach described in this paper can
be used to systematically point out the gaps in the Barings trading process controls,
as well as to suggest ways for closing those gaps.

As described in the previous section, the approach begins with an “ideal” model
of the process. Figure 6 depicts a simplified but accurate model of the futures trading
process, based on the descriptions contained in [5] and [12]. The model consists of
boxes, which describe process activities, and lines, which describe various dependency
relationships, that is, constraints that must hold true in order for the process to succeed.
The following is a brief description of the process: When a customer requests a futures
trade, the trader asks the bank headquarters for an advance of funds in order to cover
the customer’s margin account1. Once the funds have arrived, the trader performs
the trade, waits to receive the corresponding security certificate and finally pays the
exchange. In an “ideal” world, a trader only performs trades when authorized to do so
by customers, correct certificates are always received, and payment for trades exactly
match the funds forwarded to the trader by the bank headquarters. These conditions
are implied by the “prerequisite” and “exact flow” relationships, which are part of the
“ideal” process model.

The first step in our exception handling methodology consists of identifying the
possible exceptions that are associated with each element of the “ideal” process model.

1 To find out more about derivatives trading and the meaning of margin accounts, the interested reader
is referred to Zvi Bodie, Alex Kane, Alan J. Marcus, Investments (4th Edition), Irwin, 1998 (Part IV).

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 163

Figure 6. The Barings futures trading process.

For simplicity we will only consider here exceptions associated with dependency re-
lationships in the model.

According to the failure mode taxonomy shown in figure 1, one possible exception
of any prerequisite relationship is a prerequisite violation (“B without A”), that is, the
possibility of activity B happening without a prior occurrence of activity A. In the
context of the Barings trade process such violations would translate into unauthorized
trading, unwanted security receipts and unnecessary payment (figure 7).

Likewise, one possible exception of an “exact flow” process is mismatch between
the amount produced and the amount consumed. In the context of the Barings process
this would translate into a misuse of headquarter funds.

After possible exceptions have been identified, the next step is to use the in-
formation stored in the exception type taxonomy (figure 2) in order to find ways for
avoiding or detecting the exceptions. It turns out that, because the trading process
at Barings involves several independent entities (customer, bank, exchange) and re-
quires some initiative from the part of the trader, there were no practical mechanisms
for avoiding the exceptions. There were, however, several mechanisms for detecting
them.

For example, logging is one (out of several) generic mechanism for detecting pre-
requisite relationship violations (figure 8). Logging involves recording all occurrences
of activities A and B in some reliable storage medium and periodically conducting
checks for prerequisite violations. In order for logging to be successful it is, in turn,
required that (a) all occurrences of A and B are reliably logged and (b) the log can
only be modified by the processes that do the logging.

If we insert a logging process for all dependencies listed in figure 6 we get a
model of a properly instrumented trading process (figure 9).

At this point, we can compare the process derived using our approach with the
actual Barings described in [5,12]. It can immediately be seen that, although Barings

164 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

Figure 7. The Barings futures trading process with associated exceptions.

Figure 8. Logging is a generic process for detecting prerequisite violations.

did log some information about trades, it had two crucial gaps relative to the properly
instrumented process of figure 9 (see figure 10):

First, it failed to log and compare the amount of funds forwarded by headquarters
to the trader to the amounts actually paid by the trader for customer trades (in other
words, the log labeled “Funds” in figures 9, 10 was missing from the Barings process).
Second, Nick Leeson, in addition to being a trader, was also in charge of the back
room operations in the Singapore branch. This gave him the authorization to modify
the trades logs (and thus violated requirement (b) above of the logging process).

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 165

Figure 9. Barings process properly instrumented with logging processes.

Figure 10. Comparison between ideal and actual Barings process.

Nick Leeson was able to use these two gaps to his advantage as follows: When-
ever he received a trade request from a customer, he requested an amount of funds
far greater than what was required for the customer trade. He then performed the
customer trade, as well as some additional unauthorized trades on his behalf. All of
these trades were automatically logged into logs “Commits”, “Received” and “Paid”
(see figures 9, 10). Leeson then erased the records of his unauthorized trades from
logs “Commits”, “Received” and “Paid”. Therefore, at the end of each day, the log of
“Requests” matched perfectly the other three logs. By not checking for discrepancies

166 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

between the funds forwarded to Leeson and the total funds recorded at the “Paid” log,
headquarters remained unaware of Leeson’s activities until it was too late.

It is probably too simplistic to claim that the Barings disaster would have been
avoided if the management of Barings had at their disposal knowledge-based excep-
tion handling methodologies, such as the ones described in this paper. Nevertheless,
this exercise demonstrates that these methodologies and tools can be used in real-life
cases to alert management of potential weaknesses and suggest ways for making vital
business processes more robust.

4. Related work

The approach described here integrates and extends two long-standing lines
of research: one addressing coordination science principles about how to represent
and utilize process knowledge, another addressing how artificial intelligence tech-
niques can be applied to detecting and resolving conflicts in collaborative design set-
tings:

One component is a body of work pursued over the past five years by the
Process Handbook project at the MIT Center for Coordination Science [3,9,10]. The
goal of this project is to produce a repository of process knowledge and associated
tools that help people to better redesign organizational processes, learn about orga-
nizations, and automatically generate software. The Handbook database continues to
grow and currently includes over 4500 models covering a broad range of business
processes. A mature Windows-based tool for editing the Handbook database contents,
as well as a Web-based tool for read-only access have been developed. A key in-
sight from this work is that a repository of business process templates, structured as
a specialization taxonomy, can assist people to design innovative business processes
more quickly by allowing them to retrieve, contrast and customize interesting ex-
amples, make “distant analogies”, and utilize “recombinant” (mix-and-match) design
techniques.

The other key component of this work is nearly a decade of development and
evaluation of systems for handling multi-agent conflicts in collaborative design [6,7]
and collaborative requirements capture [8]. This work resulted in principles and tech-
nology for automatically detecting, diagnosing and resolving design conflicts between
both human and computational agents, building upon a knowledge base of roughly
300 conflict types and resolution strategies. This technology has been applied success-
fully in several domains including architectural, local area network and fluid sensor
design. A key insight from this work is that design conflicts can be detected and
resolved using a knowledge base of generic and highly reusable conflict management
strategies, structured using diagnostic principles originally applied to medical expert
systems. Our experience to date suggests that this knowledge is relatively easy to
acquire and can be applied unchanged to multiple domains.

The work described in this paper integrates and extends these two lines of research
in an innovative and, we believe, powerful way. The central insights underlying this

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 167

integration are that (1) business process exceptions can be handled by generalizing
the diagnostic algorithms and knowledge base underlying design conflict, and (2) the
exception handling knowledge base can be captured as a set of process templates
that can be retrieved, compared and customized using the principles embodied in the
Process Handbook. The result of this integration is an approach that allows process
designers and participants to better take advantage of insights collected from a wide
range of experts and domains when trying to determine what exceptions can occur
in their process, as well as how such exceptions can be detected, diagnosed and
resolved.

5. Current status and future work

To date, we have captured over 4500 generic process templates, 100 exception
types and 200 exception resolution strategies and have constructed a cross-referenced
knowledge base with this information on top of the Process Handbook tools (figure 11;
see [10] for a description of the Process Handbook tools).

This paper has emphasized the use of our exception handling knowledge base
as a decision support tool for humans. Our ongoing work is also focused on con-
necting our technology with automated process enactment systems, such as workflow
controllers and software agent systems. It is widely recognized that state-of-the art
workflow technology provides very rudimentary support for exception handling [1,4].
The result of our work will be a prototype implementation of a domain-independent
exception handling engine, which oversees the enactment of a workflow script, mon-
itors for exceptions and decides (automatically for the most part) how to intervene
in order to resolve them. Given an “ideal” workflow script, the engine first uses
the exception handling knowledge base in order to anticipate potential exceptions and
augment the system with additional actions that play the role of software sentinels.
During enactment time, these sentinels automatically trigger the diagnostic services
of the engine when they detect symptoms of exceptional conditions. The diagnostic
services traverse the exception type taxonomy, select (possibly with human assistance)
a diagnosis and then select and instantiate a resolution plan. The resolution plan is
eventually translated into a set of workflow modification operations (e.g., add tool,
remove tool, modify connection, etc.), which are dynamically applied to the executing
workflow.

For further information about our work, please see the Adaptive Systems and
Evolutionary Software web site at http://ccs.mit.edu/ases/. For further information on
the Process Handbook, see http://ccs.mit.edu/.

Acknowledgment

The authors would like to thank Rafael Yahalom for helping them understand
the Barings bank processes. The authors gratefully acknowledge the support of the
DARPA CoABS Program (contract F30602-98-2-0099) while preparing this paper.

168 C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions

F
ig

ur
e

11
.

S
cr

ee
n

sh
ot

of
ex

ce
pt

io
n

ha
nd

li
ng

re
po

si
to

ry
to

ol
.

C. Dellarocas, M. Klein / A knowledge-based approach for handling exceptions 169

References

[1] P. Barthelmess and J. Wainer, Workflow systems: A few definitions and a few suggestions, in:
Proc. Conf. On Organizational Computing Systems (COOCS’95) (1995) pp. 138–147.

[2] W.J. Clancey, Heuristic classification, Artificial Intelligence 27(3) (1985) 289–350.
[3] C. Dellarocas, J. Lee, T.W. Malone, K. Crowston and B. Pentland, Using a process handbook to

design organizational processes, in: Proceedings of the AAAI 1994 Spring Symposium on Compu-
tational Organization Design, Stanford, CA (1994) pp. 50–56.

[4] C.A. Ellis, K. Keddara and G. Rozenberg, Dynamic change within workflow systems, in: Proc.
Conf. on Organizational Computing Systems (COOCS’95) (1995) pp. 10–21.

[5] S. Fay, The Collapse of Barings (W.W. Norton, New York, 1997).
[6] M. Klein, Conflict resolution in cooperative design, University of Illinois at Urbana–Champaign,

Technical Report UIUCDCS-R-89-1557.
[7] M. Klein, Supporting conflict resolution in cooperative design systems, IEEE Transactions on Sys-

tems, Man and Cybernetics 21(6) (1991) 1379–1390.
[8] M. Klein, An exception handling approach to enhancing consistency, completeness and correctness

in collaborative requirements capture, Concurrent Engineering: Research and Applications 5(1)
(1997) 37–46.

[9] T.W. Malone, K. Crowston, J. Lee and B. Pentland, Tools for inventing organizations: Toward a
handbook of organizational processes, in: Proceedings of 2nd IEEE Workshop on Enabling Tech.
Infrastructure for Collaborative Enterprises (1993) pp. 72–82.

[10] T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C. Osborne
and A. Bernstein, Toward a handbook of organizational processes, MIT Center for Coordination
Science, Working Paper 198 (1997). To appear in Management Science.

[11] D. Raheja, Software system failure mode and effects analysis (SSFMEA) – A tool for reliability
growth, in: Proceedings of the Int’l Symp. on Reliability and Maintainability (ISRM’90), Tokyo,
Japan (1990) pp. 271–277.

[12] P.G. Zhang, Barings Bankruptcy and Financial Derivatives (World Scientific Publishing Co, Sin-
gapore, 1995).

