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ABSTRACT 
Software agent marketplaces require the development of new 
architectures, which are capable of coping with unreliable 
computational and network infrastructures, limited trust among 
independently developed agents and the possibility of systemic 
failures. In analogy with human societies, agent marketplaces will 
benefit from the introduction of appropriate electronic exception 
handling institutions, whose role will be to help guarantee efficiency 
and fairness in the face of these challenges. This paper presents a 
research methodology for designing and evaluating such electronic 
institutions. It also describes how the methodology has been applied 
in order to design and evaluate an exception handling architecture 
for robust software agent marketplaces based on the contract net 
protocol. 

Keywords 
Software agents, electronic markets, electronic institutions, 
exception handling, contract net, failure management. 

1. INTRODUCTION 
Software agent technologies promise substantial increases in 
productivity by automating several of the most time-consuming 
stages of electronic commerce processes. Agents are software 
systems, which are capable of interacting with other agents in a 
flexible and autonomous way, in order to meet the design objectives 
of their creators [12]. 

Electronic agent marketplaces are formed by collections of software 
agents, which interact with one another in order to negotiate and 
form partnerships or trade products and services through the 
Internet. In the emerging model of 21st century electronic commerce, 
a variety of open software agent marketplaces will be competing 
with one another for participants. Independently developed agents 

will be entering and leaving marketplaces at will, in pretty much the 
same way that human investors enter and leave different financial 
markets today. The stakeholders of electronic marketplaces will, 
therefore, have an interest in making them as attractive to 
prospective “customers” (buyers and sellers) as possible. One 
expects that the most successful marketplaces will be the ones that 
provide the best “quality of service” guarantees (in terms of security, 
fairness, efficiency, etc.). The proper design of open electronic 
marketplace infrastructure thus emerges as an important research 
and practical question. 

Designing efficient and robust open electronic marketplaces, whose 
participants will be independently developed software agents, is a 
difficult problem. Some of the most important challenges include: 

• Unreliable Infrastructures. In large distributed systems like the 
Internet, unpredictable node and link failures may cause agents 
to die unexpectedly, messages to be delayed, garbled or lost, 
etc.  

• Non-compliant agents. In open systems, agents are developed 
independently, come and go freely, and thus can not always be 
trusted to follow the rules properly due to bugs, bounded 
rationality, programmer malice and so on. This can be expected 
to be especially prevalent and important in electronic 
marketplaces where there may be significant incentives for 
fraud. 

• Emergent dysfunctions. Emerging multi-agent system 
applications are likely to involve complex and dynamic 
interactions that can lead to emergent dysfunctional behaviors 
with the relatively lightweight multi-agent coordination 
mechanisms that have proved most popular to date. This is 
especially true since agent societies operate in a realm where 
relative coordination, communication and computational costs 
and capabilities can be radically different from those in human 
society, leading to behaviors with which we have little previous 
experience. It has been argued, for example, that 1987’s stock 
crash was due in part to the action of computer-based “program 
traders” that were able to execute trade decisions at 
unprecedented speed and volume, leading to unprecedented 
stock market volatility [26]. 

All of these departures from “ideal” multi-agent system behavior can 
be called exceptions, and the results of inadequate exception 
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handling include the potential for poor performance, system 
shutdowns, and security vulnerabilities. 

The standard approach to dealing with exceptions in closed systems 
has been to “compile in” complicated and carefully coordinated 
exception handling behaviors into all problem-solving agents. We 
call this approach the “survivalist approach”, because agents in such 
systems are expected to contain enough intelligence to be able to 
fend for themselves in the face of, say, unreliable infrastructure and 
systemic dysfunctions. 

We argue that survivalist approaches to exception handling are not 
viable in the context of open systems. First, they raise the bar for 
participation into the system by requiring that all agents contain 
sophisticated exception handling mechanisms built into them. This 
is especially undesirable in applications, such as electronic 
marketplaces, where participation is voluntary and the market 
maker’s incentive is to reduce the “barriers of entry” into the system 
as much as possible. Second, and most important, even if a 
sophisticated “survivalist” exception handling behavior could be 
agreed upon, in an open system where agents are developed 
independently there can be no guarantee that they will all correctly 
follow it. Agents could deviate from the specified exception 
handling behavior because of ignorance of the specification, 
programming bugs or malice. In such a system, naïve agents would 
be left unprotected in the face of exceptions. Furthermore, even 
sophisticated agents could be harmed by transacting with agents of 
variable quality. For example, suppose that a sophisticated and 
highly reliable agent receives a contract from another agent and 
contracts out a subtask to a third agent, who happens to be buggy 
and failure prone. Further suppose that the third agent encounters a 
bug before it has completed its assigned subtask. Because its 
implementation is flawed, it fails to notify its contractor of the 
problem. The contractor will then fail to receive the expected results 
on time (probably having to reassign the subtask to another agent) 
and will itself be late in returning its results to its contractor, thus 
damaging its reputation for being a reliable agent. 

Civilized human societies have successfully coped with similar 
challenges by developing social institutions that set and enforce 
laws (e.g. courts, police), monitor for and respond to emergencies 
(e.g. ambulance system), prevent and recover from disasters (e.g. 
coast guard, firefighters), etc. In that way, societies allow citizens to 
utilize relatively simple, optimistic and efficient rules of behavior, 
offloading the prevention and recovery of many problem types to 
social institutions that can handle them efficiently and effectively by 
virtue of their economies of scale and widely accepted legitimacy.  

In an analogous manner, we believe that the design of the right 
electronic exception-handling institutions will be a crucial success 
factor in the new universe of open electronic marketplaces. More 
specifically, our claim is that, through the proper division of labor 
between problem-solving agents and institutions, successful open 
electronic marketplaces will achieve a number of desirable 
outcomes, including:  

• Decreasing the “barriers to survival” for each agent, 
simplifying their implementation requirements and allowing 
them to focus on their core problem-solving functionality. 

• “Leveling the playing field” by offering a basic set of security, 
fairness and efficiency guarantees, which provide consistent 
system behavior in the presence of agents of varying 
sophistication, reliability and benevolence.  

• Increasing the efficiency of the system as a whole.  

In this paper we present an experimental evaluation of a set of 
domain-independent exception handling services we have developed 
to address these challenges, applied to the well-known “Contract 
Net” multi-agent coordination protocol. We show that these services 
produce more effective exception handling behavior than standard 
existing techniques, while allowing simpler agent implementations. 
The remainder of this paper will introduce the contract net protocol, 
outline our exception handling approach, describe the experiments 
used to evaluate it, consider the contributions of this work, and 
discuss directions for future research. 

2. THE CONTRACT NET PROTOCOL 
The “Contract Net” (henceforth called CNET) is a protocol for 
matching up tasks with agents in multi-agent systems [22]. CNET 
and its many variants is probably the most widely used agent system 
protocol, presumably because of its intuitiveness, direct applicability 
to many common problems, simplicity and relative efficiency. 
CNET has been applied to many domains including manufacturing 
control [1], tactical simulations [3], transportation scheduling [4], 
and distributed sensing [22]. CNET is also an abstract version of the 
one-round-sealed-bid auction protocol used in a number of today’s 
B2B exchanges. 

The CNET protocol operates as follows (Figure 1): 

An agent (hereafter called the “contractor”) identifies a task 
that it cannot or chooses not to do locally and attempts to find 
another agent (hereafter called the “subcontractor”) to perform 
the task. It begins by creating a Request For Bids (RFB) 
which describes the desired work, and then sends it to 
potential subcontractors (typically identified using a 
matchmaker that indexes agents by the skills they claim to 
have). Interested subcontractors respond with bids (specifying 
such issues as the time needed to perform the task) from 
which the contractor selects a winner. The winning agent, 
once notified of the award, performs the work (potentially 
subcontracting out its own subtasks as needed) and submits 
the results to the contractor.  

CNET is prone to a wide range of potential exceptions from all three 
of the categories (unreliable infrastructure, non-compliant agents, 
emergent dysfunctions) described in Section 1. A more exhaustive 
analysis of these failure modes will appear in a forthcoming paper. 
For now we will limit ourselves to three examples: 
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Contractor Role Subcontractor Role

Create RFB
(Request For

Bids)

Create Bid

Select Bid

Perform Work

Receive Results

Send RFB

Send Bid

Award Contract

Send Results

 
 

Figure 1. A simple version of the Contract Net protocol. 

 

- Agent death: If a CNET agent dies there are several immediate 
consequences. If the agent is acting as a subcontractor, its 
customer clearly will not receive the results it is expecting. In 
addition, if the agent has subcontracted out one or more 
subtasks, these subtasks and all the sub-sub-… tasks created to 
achieve them become “orphaned”, in the sense that there is no 
longer any real purpose for them and they are uselessly tying 
up potentially scarce subcontractor resources. Finally, if the 
system uses a matchmaker, it will continue to offer the now 
dead subcontractor as a candidate (a “false positive”), resulting 
in wasted message traffic. 

- Fraudulent [sub]contractor: A buggy or intentionally 
malicious CNET agent can wreak havoc through fraudulent 
advertising, bidding or subcontracting.  

- Resource poaching: It is typical for CNET systems to annotate 
tasks with priorities, so that when a subcontractor is 
considering several RFBs, it will bid (first) for the RFB with 
the greatest priority. One emergent dysfunction that can occur 
in such contexts is “resource poaching”, wherein a slew of low-
priority but long-duration tasks tie up the subcontractors, 
thereby freezing out resources needed for the higher-priority 
tasks that arrive later [6]. 

This paper concentrates on the “agent death” exception. As we 
mention in Section 6, we are currently working on electronic 
institutions for handling other CNET exceptions as well, but the 
results of that work will be reported in a forthcoming paper. 

The standard “agent death” exception handling mechanism used in 
CNET, as in many distributed protocols, is timeout/retry: If no 
results are received by the deadline the subcontractor promised, for 
example, a contractor will re-start the subcontracting process for that 
task, sending a new RFB. This approach does handle the agent death 
exception, but rather inefficiently, since it does not eliminate 
orphaned tasks, does not remove false positives from the 
matchmaker, and is prone to an “unzippering” effect, wherein the 

death of an agent performing a subtask can cause cascading timeouts 
and retries for its customers, the customers of its customers, and so 
on, all the way up to the CNET agent at the top of the task 
decomposition tree. The timeout/retry approach will not, of course, 
prevent a contractor from repeatedly falling prey to a fraudulent 
CNET agent, nor will it help with resource poaching. 

It is certainly imaginable that the CNET protocol could be 
elaborated to allow agents to handle a wider range of exceptions, 
and most agent system exception handling research has in fact taken 
this direction. Even the original CNET protocol [22] included such 
augmentations as an “immediate response bid’, which allowed a 
contractor to determine whether the lack of bids was due to all 
eligible subcontractors being busy (in which case a retry is 
appropriate) or due to the outright lack of subcontractors with the 
necessary skills (in which case presumably the system manager/user 
should be informed). This “survivalist” approach to multi-agent 
exception handling faces, however, a number of serious 
shortcomings: 

First of all, it greatly increases the burden on agent developers. It is 
predicated upon “compiling in” potentially complicated and 
carefully coordinated exception handling behaviors into all problem-
solving agents. Perhaps more seriously, this approach is not viable 
in the context of open systems where agents are developed by 
independent third parties. Some agents may not comply properly 
with these more sophisticated protocols, or violate some of their 
underlying assumptions. Some protocols, for example, are based on 
game-theoretic analyses [21] and assume that all agents will be 
rational utility maximizers, which obviously may not always be the 
case. All agent interactions are slowed down by the overhead 
incurred by these heavyweight protocols. Some kinds of 
interventions (such as “killing” a broken agent that is uselessly 
monopolizing scarce resources) may be difficult to implement 
because the agents do not have the established legitimacy needed to 
apply such interventions to their peers. Finally, finding the 
appropriate responses to some kinds of exceptions (typically 
emergent exceptions such as resource poaching) requires that the 
agents achieve a more or less global view of the system state, which 
is notoriously difficult to create without heavy bandwidth 
requirements. 

3. DOMAIN-INDEPENDENT EXCEPTION 
HANDLING SERVICES 
It is for this reason that we have been creating a set of services that 
offload the exception handling burden from problem solving agents. 
We call this the “citizen” approach by analogy to the way exceptions 
are handled in human society. In such contexts, citizens adopt 
relatively simple and optimistic rules of behavior, and rely on a 
whole host of exception handling institutions (provided by the 
infrastructure) in order to handle most problems. 

3.1 Capturing Domain-Independent Exception 
Handling Expertise 
The key insight that makes this approach workable in the context of 
multi-agent systems (MAS) is the simple but powerful notion that 
the characteristic exceptions and applicable exception handling 
techniques for a multi-agent system can be usefully treated as 
dependent on the market mechanism used but independent of the 
vertical domain the agents work in. This is a key insight because it 
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means that we can build exception handling knowledge bases (and 
associated run-time services) that are generic and thereby highly 
reusable. 

Early work on expert systems development revealed that it is useful 
to separate domain-specific problem solving and generic control 
knowledge [2]. Analogous insights were also confirmed in the 
domains of collaborative design conflict management [14] and 
workflow exception management [17]. 

The exceptions that characterize a given MAS protocol can be 
uncovered using an emerging technique we call Role Commitment 
Violation (RCV) analysis [16]. RCV analysis is based on the insight 
that coordination fundamentally involves the process of agents 
making commitments to each other. Exceptions can thus be viewed 
as the ways in which the agents in a MAS can fail to achieve the 
commitments underlying their coordination protocol.  

We have used RCV analysis to uncover the consequences of agent 
death in the context of a CNET. In summary, if a CNET agent dies 
there are several immediate consequences. If the agent is acting as a 
subcontractor, its customer clearly will not receive the results it is 
expecting. In addition, if the agent has subcontracted out one or 
more subtasks, these subtasks and all the sub-sub-… tasks created to 
achieve them become “orphaned”, in the sense that there is no 
longer any real purpose for them and they are uselessly tying up 
potentially scarce subcontractor resources. Finally, if the system 
uses a matchmaker, it will continue to offer the now dead 
subcontractor as a candidate (a “false positive”), resulting in wasted 
message traffic. 

Once we have identified the exceptions that characterize a given 
MAS protocol we need to uncover the handlers that are appropriate 
for dealing with them. Unlike exceptions, the range of possible 
handlers is not a closed easily enumerable set but seems to be 
limited only by human ingenuity.  

We have found that there are four main classes of handlers; those 
suitable for anticipating and avoiding exceptions before they occur, 
or detecting and resolving them after they occur [8]. The following 
is a domain-independent set of handlers for dealing with unexpected 
agent death. 

To detect agent death, periodically poll active subcontractors. 
Consolidate polling in order to minimize the number of “are you 
alive?” messages CNET agents must respond to. To resolve a 
situation where an agent has died, clear the agent record from the 
matchmaker(s), and immediately instruct the contractors for that 
agent to re-run the bidding process for the failed tasks. One can 
cancel the orphaned sub-sub-tasks if any, or else (if there is a 
standard task decomposition for this kind of problem) be prepared 
to offer these results to the new CNET agent that takes on the sub-
task previously assigned to the dead agent. Finally, to avoid or 
minimize the number of agent death exceptions, keep track of agent 
reliability statistics (as a function of mean time between failures) 
and help agents use them when making task assignment decisions. 

3.2 A Domain-Independent Architecture for 
Handling Agent Death Exceptions 
Our approach instantiates these ideas in an open MAS setting using 
the following functional architecture: 

A
S

A
S

A
S

A

A

S Sentinel

Agent

MAS Protocol Message Traffic

Exception Handling Traffic

Reputation 
Server

Contract 
Notary

Registrar

 
 
Figure 2. Functional architecture for open MAS with exception 

handling services. 
 
When an agent joins an open MAS served by the exception handling 
(EH) services, it must register with a registrar responsible for 
assigning it a sentinel that will mediate all of the agents’ further 
interactions with other agents in the system. The agents so 
‘wrapped’ can include problem solving agents as well as 
components such as matchmakers that support the protocols they 
enact. 

Sentinels are the central element in this approach. They can be 
viewed as “commitment monitors” whose role is to observe and 
influence agent behavior as necessary to ensure the robust 
functioning of the system as a whole. Each sentinel includes a 
repository of domain-independent EH expertise that describes the 
characteristic exceptions and associated handlers for the protocol(s) 
enacted by the agents in that MAS. Sentinels monitor message 
traffic to develop a model of the commitments their agent(s) are 
involved in, use the appropriate anticipation and/or detection 
handlers to uncover when these commitments are violated, diagnose 
the underlying causes to identify the appropriate avoidance and/or 
resolution handlers, and enact these handlers to help re-establish the 
violated commitments, or at least minimize the impact of them 
having been violated. Ancillary services such as the contract notary 
and reputation server keep track of global state information such as 
commitment structures and reliability statistics. Agents, for their 
part, must be able to respond appropriately to a relatively small set 
of EH directives to support the action of the sentinels. 

4. EXPERIMENTAL EVALUATION 
We ran a series of experiments to test these claims in a multi-agent 
marketplace running the CNET protocol. The experiments all take 
place in a discrete event based multi-agent system simulator built on 
top of the Swarm Simulation System [19]. Our system allows one to 
emulate a world consisting of multiple host computers, each running 
one or more agents and connected by network links, all with 
controllable speed and failure frequency. The scenario consists of 
several dozens CNET agents, one per host, interacting over a 
reliable network. Contractor agents send out an RFB with a 
specified timeout period: potential subcontractors bid only if they 
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become available during this period (i.e. subcontractors perform 
only one task at a time). Bids are binding, which means that 
subcontractors will bid on a new RFB only after the timeout for its 
pending bid expired without an award being received (presumably 
because some other subcontractor won the task). Contractors select 
the winning bids based solely on how quickly the bidders claimed 
they could perform the task. Contractors re-send RFBs if no bids 
have been received by the timeout period (presumably because no 
subcontractors with the needed skills were available at that time). 
This CNET protocol is modeled on the one described in [22] and 
was chosen because it is simple and was shown by Smith to 
represent a reasonable design tradeoff in several test domains. 

Our experiments explored the effect of three experimental 
conditions. The key independent variable, of course, was whether 
the agents took a “survivalist” or “citizen” approach to handling 
agent death. Survivalist agents rely on the standard timeout/retry 
mechanism to handle agent death: If a subcontractor does not return 
results to its contractor by the agreed-upon deadline, the contractor 
issues a new RFB for the task. Citizen agents, by contrast, rely 
entirely on the EH services. Whenever a task has been awarded to a 
subcontractor, the EH service begins periodic polling of the 
subcontractor to check whether it is still alive, which continues until 
the agent has died or returned the task results to its contractor. If an 
agent dies, the EH service takes a series of coordinated actions: 

1. It notifies the matchmaker that this agent is dead and should 
therefore be removed from the list of available subcontractors. 
This handles the “false matchmaker positive” problem. 

2. If the agent is subcontracting to someone else, it immediately 
informs the contractor that it should re-send the RFB for that 
task, thereby ensuring that the contractor does not waste time 
waiting for results from a dead agent. Note that this avoids the 
“unzippering” effect described above. 

3. If the agent is a contractor for some pending subtasks, a proxy 
agent is created to try to find new customers for those 
“orphaned” subtask results. The proxy registers itself with the 
matchmaker, so that it becomes eligible to receive RFBs. It 
then waits for an RFB for the orphaned tasks, and submits a 
bid whose estimated completion time accounts for the amount 
of time that has already been spent processing those tasks, and 
is therefore likely to be highly competitive. This is a reasonable 
strategy in domains where there is a standardized task 
decomposition, so the replacement for the dead agent is apt to 
require the same subtask results that the dead agent did. If the 
proxy wins the anticipated RFB, it forwards the results as it 
receives them. Otherwise it keeps responding to RFBs until it 
wins or until the task results become obsolete. This strategy is 
thus designed to minimize wasted work on orphaned tasks. In 
domains where results get obsolete very quickly, or where there 
is no standard task decomposition, it may be more appropriate 
to do without the proxy-bidding agent and simply kill all 
orphaned tasks when the ultimate customer for them has died. 

4. Finally, it reports the agent death to the reputation server. This 
way the reputation server keeps track of the mean time between 
failures (MTBF) for every agent in the system. Whenever a 
contractor is receiving bids as a response to a previously sent 
RFB, the reputation server instructs sentinels to filter out 
incoming bids from agents whose MTBF is substantially lower 
than the marketplace mean unless they are the only bids 

received. This bid filtering scheme is designed to avoid agent 
death exceptions by protecting contractors from subcontracting 
unreliable agents, if other, more reliable agents are also 
available. 

Our central hypothesis is that the “citizen” exception handling 
approach will significantly reduce the average amount of time 
needed to complete tasks in which exceptions occur (due to quicker 
detection of agent death, and the avoidance of the unzippering 
effect), as well as reduce the overall system effort needed to perform 
tasks (by avoiding wasting resources on orphaned tasks). We also 
explored the related hypotheses that the impact of the EH services 
will depend on the nature of the task decompositions needed to 
perform a task. More specifically, tasks that have deep task 
decompositions should benefit more because in those cases the 
unzippering effect will be more severe with survivalist agents. 

In order to validate the above hypotheses, we tested the contract 
completion performance of five different agent configurations: 

a) Failure-free environment (baseline case) 

b) Failure-prone environment, “survivalist” agents (timeout-and-
retry) 

c) Failure-prone environment, “citizen” agents supported by EH 
services which poll subcontractors and, upon detection of agent 
death, inform the contractor of the dead agent and kill all 
orphaned tasks. 

d) Failure-prone environment, “citizen” agents supported by EH 
services which poll subcontractors and, upon detection of agent 
death, inform the contractor of the dead agent and create a 
proxy agent to try to reassign orphaned tasks. 

e) Same as d) with the addition of filtering of bids from unreliable 
agents. 

In all configurations, top-level contractor agents execute a loop 
where they announce a new top-level task, wait for bids, award the 
contract to the best bidder, wait to receive the results and then stay 
idle a random amount of time before repeating the above steps.  

In order to be completed, top-level tasks require the creation of task 
trees with depth 4 and branching factor 2. In other words, in order to 
complete a top-level task, a top-level contractor has to seek two 
level-2 subcontractors, each of which has to seek two level-3 
subcontractors, and so on. Therefore, a single top-level task may 
involve up to 15 agents working simultaneously. To simplify the 
experiment, it is assumed that any available subcontractor is capable 
of performing any task in a given task chain. 

In the failure-prone cases, subcontractor agents were divided into 
three reliability classes. All subcontractor agents had a “lifespan” 
(time until death) that was selected for each agent randomly from a 
geometric distribution with mean time between failures (MTBF) 
equal to: 

10⋅(task duration)  for low reliability agents 
50⋅ (task duration)  for medium reliability agents 
100⋅(task duration)  for high reliability agents.  

When an agent dies, a new one is created with the same skills but 
with a different unique ID and is registered with the matchmaker. 
This is done to keep the subcontractor population from shrinking 
over the course of the experiment, thereby emulating a large and 

229



dynamic agent pool where the population of subcontractors remains 
roughly constant. 

All simulations were run until a 90% confidence interval could be 
computed for each of the completion time estimates with a width of 
less than 15 percent of the estimated mean. 

Figure 3 summarizes the mean contract completion time relative to 
the failure-free (baseline) case for survivalist and each of the three 
configurations of citizen agents described above.  
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Figure 3. Mean task completion times relative to the failure-free 
case. 

As expected, citizen agents with EH support clearly outperformed 
survivalist agents and managed to greatly reduce the effects of agent 
death exceptions (mean completion time in all citizen configurations 
was less than 140% of the failure-free mean). The difference in 
performance was particularly dramatic for longer tasks chains. The 
explanation in this case is that, for longer tasks, the probability of 
multiple agent deaths in the same task tree is correspondingly 
higher. In the survivalist case, each death may trigger the 
“unzippering” effect described in Section 2, which would effectively 
double the task completion time. In the case of multiple deaths, the 
“unzippering” effect would be repeated, thus multiplying the mean 
completion time even more. 

Figure 4 compares the relative performance of the three different 
configurations of EH services tested. Although the differences are 
not very dramatic, we can see that the creation of proxy agents has a 
positive effect in overall efficiency, as does the addition of bid 
filtering. The combination of polling, creation of a proxy agent and 
bid filtering is the approach that gave the best overall results.  

In addition to the mean task completion time, we were also 
interested to compare the standard deviation of task completion 
times in the presence of agent deaths. Our rationale is that, in most 
environments, consistency is equally important to efficiency. A 
system with a low mean completion time, but where some task 
instances take a very long time to complete is bound to make some 
users extremely unhappy. 
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Figure 4. Comparative performance of the three configurations 
of EH services tested. 

Figure 5 summarizes the standard deviations of task completion 
times in each of the tested configurations. From a study of the charts 
it is clear that citizen agents had a lower maximum observed 
completion time in all four configurations. 

0

2

4

6

8

10

12

2 3 4

Task Chain Length

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 
(m

u
lt

ip
le

s 
o

f 
si

n
g

le
 t

as
k 

d
u

ra
ti

o
n

)

Survivalist

Citizen (polling + killing)

Citizen (proxy)

Citizen (proxy + bid filtering)

 

Figure 5. Standard deviation of task completion times in the four 
failure-prone agent configurations tested. 
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Figure 6. Effects of bid filtering in the utilization ratio of agents 
of different reliability. 

 

Finally, Figure 6 depicts the effect of bid filtering in creating a “fair” 
marketplace where high reliability agents get more contracts and 
therefore have a higher utilization ratio than low reliability agents. 

In conclusion, citizen agents have proven to perform more 
efficiently than survivalist agents both in terms of lowering the mean 
as well as improving the consistency of contract completion time in 
the face of exceptions. 

5. CONTRIBUTIONS OF THIS WORK 
From a general perspective, the “exception analysis” approach 
presented in this paper is an interesting complement to the field of 
economic mechanism design. The field of mechanism design uses 
the tools of economics and game theory to design “rules of 
interaction” for economic transactions that will yield some desired 
outcome [24]. In order to apply these analytical tools, mechanism 
designers usually make assumptions (such as the existence of 
rational, risk-averse agents, zero communication costs, perfectly 
reliable infrastructure, etc.), which are not always realistic in open 
systems. Our work begins by considering what might happen if one 
or more of the assumptions on which a particular game theoretic 
analysis is based are violated. It then proceeds to propose, and 
experimentally evaluate, additional mechanisms (exception handling 
institutions) whose goal is to maintain the desirable outcomes 
intended by the original mechanism in the complex, messy 
environments of open electronic markets. 
 Several lines of research have begun to explore concepts similar to 
those presented here, but none as far as we know have explored the 
combination of domain-independent exception handling 
implemented as distinct services. Hägg [10] presents the concept of 
sentinel agents; these are distinct services, which monitor the agent 
system and intervene when necessary by selecting alternative 
problem solving methods, excluding faulty agents, or reporting to 
human operators. This approach is not domain-independent, 

however: sentinels must be customized for each new application. 
Kaminka et.al. [13] present Social Attentive Monitoring (SAM), an 
exception handling approach wherein agents detect exceptions via 
uncovering violations of normative relationships with their 
teammates, and exploit a teamwork model to diagnose and fix these 
problems. This approach does have generic elements, but it is 
limited to teamwork protocols like TEAMCORE [23] and requires 
domain-dependent customization of the exception detection 
procedures. Horling et al. [11] have explored the use of domain-
independent tools to detect and resolve the exception wherein the 
agents have a harmfully inaccurate picture of the inter-agent 
dependencies in their current context. This approach is limited to a 
single exception type, however, and like SAM applies to just one 
class of coordination protocol. Finally, Venkatraman et al [25] 
describe a generic approach to uncovering agents that do not comply 
with coordination protocols. This approach only addresses one 
subclass of exception types, however, and does not include a 
resolution component. 
Distributed and real-time systems research has produced useful 
techniques such as checkpointing and rollbacks [5, 20], but these 
“one size fits all” techniques achieve generality at the cost of the 
efficiencies that can result from coordination-mechanism specific, 
albeit domain-independent, exception handling mechanisms. 

6. FUTURE WORK 
We plan to pursue two concurrent lines of development in this work. 
One line will include empirically and analytically evaluating 
different “survivalist” and “citizen” exception handling approaches 
for a wider range of exception types and market mechanisms. For 
example, we are currently looking at exceptions (intentional and 
unintentional) related with reputation mechanisms and ways to 
avoid or detect and resolve them. We are also planning to look at 
exceptions related to intentional contract violations and the 
associated electronic dispute resolution and sanctioning 
infrastructures. 

A second line of work will be to increase the power and scope of our 
generic exception handling technologies. The RCV approach is 
currently being refined and formalized. Furthermore, we have 
developed a prototype repository of exceptions and associated 
handlers, built as an extension of the MIT Process Handbook [18]. 
As we are accumulating analytical and experimental evidence with 
market mechanisms, associated exceptions and relevant handlers, 
our repository will grow into an invaluable reference for electronic 
marketplace designers. 

The long-term goal of these efforts is to integrate these lines of 
work, and thereby provide electronic marketplace system developers 
with a comprehensive knowledge base of well-founded design 
guidelines, along with a suite of domain-independent component 
technologies that enable them to much more easily develop more 
robust open electronic markets. 
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