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Abstract 

A critical challenge to creating effective agent-based systems is allowing them to operate 
effectively when the operating environment is complex, dynamic, and error-prone. In this paper 
we will review the limitations of current “agent-local” approaches to exception handling in agent 
systems, and propose an alternative approach based on a shared exception handling service that is 
“plugged”, with littl e or no customization, into existing agent systems. This service can be 
viewed as a kind of “coordination doctorî; it knows about the different ways multi -agent systems 
can get “sick” , actively looks system-wide for symptoms of such ìill nessesî, and prescribes 
specific interventions instantiated for this particular context from a body of general treatment 
procedures. Agents need only implement their normative behavior plus a minimal set of 
interfaces. We claim that this approach offers simpli fied agent development as well as more 
effective and easier to modify exception handling behavior. 

 

The Challenge:  Exception-Capable Agent Systems 

A critical challenge to creating effective agent-based systems is allowing them to operate 
effectively when, as is typical for many domains ranging from manufacturing to off ice work to 
military information gathering, the operating environment is complex, dynamic, and error-prone 
(Suchman 1983; Auramaki and Leppanen 1989; Karbe and Ramsberger 1990; Strong 1992; Mi 
and Scacchi 1993). In such domains, we can expect to utili ze a highly diverse set of agents; some 
have fairly sophisticated coordination capabiliti es, but many will be simple encapsulations of 
legacy applications. New tasks, agents and other resources can be expected to appear and 
disappear in unpredictable ways. Communication channels can fail or be compromised, agents 
can ìdieî (break down) or make mistakes, inadequate responses to the appearance of new tasks or 
resources can lead to missed opportunities or inappropriate resource allocations, unanticipated 
agent inter-dependencies can lead to systemic problems like multi -agent conflicts, ìcircular waitî 
deadlocks, and so on. All of these departures from “ ideal” collaborative behavior can be called 
exceptions. The result of inadequate exception handling is the potential for systemic problems 
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such as clogged networks, wasted resources, poor performance, system shutdowns, and security 
vulnerabiliti es. 

In this paper we will review the limitations of current “agent-local” approaches to exception 
handling in agent systems, and propose an alternative “shared service” approach that offers 
simpli fied agent development as well as more effective and easier to modify exception handling 
behavior. Initial versions of this service have been developed and tested in the multi -agent 
collaborative design conflict management domain; we will describe our preliminary results as 
well as our future plans. 

Contributions and Limitations of Current Work 

Current approaches to agent exception handling have serious limitations in terms of agent 
development cost and the effectiveness of system-wide exception handling behavior. The 
standard approach has been to ìcompile inî complicated and carefully coordinated exception 
handling behaviors into all problem-solving agents. This is, however, fundamentally 
problematic, since the causes, manifestations and resolutions for agent system exceptions are 
inherently systemic and context-sensitive rather than localizable to any particular agent. A 
circular wait deadlock, for example (where several agents are all stalled waiting for inputs from 
each other) can only be detected as a pattern of agent interactions, and can only be resolved by 
changing that pattern (e.g. by replacing one agent with another that has different input 
requirements). Agent developers must thus anticipate all the contexts in which the agent may be 
used, but this is extremely diff icult. No systematic methodology is available, however, to help 
developers identify all relevant exception types and resolution strategies. Making changes in 
exception handling behavior is diff icult because it potentially requires coordinated changes in 
multiple agents. Agents become much harder to maintain, understand and reuse because the 
relatively simple normative behavior of an agent becomes obscured by a potentially large body 
of code devoted to handling exceptional conditions. Finally, it is unrealistic to expect that all 
agents will have sophisticated exception handling capabiliti es built i n. In many cases we will 
have to be able to operate with agents whose design incorporates only  the most basic 
capabiliti es. 

A few efforts have done some preliminary exploration of the use of distinct exception handling 
services. This work has occurred predominantly in the context of business process enactment 
(Kreifelts and Woetzel 1987; Auramaki and Leppanen 1989; Karbe and Ramsberger 1990; Strong 
1992; Mi and Scacchi 1993), manufacturing control (Parthasarathy 1989; Katz 1993; Visser 1995) 
and planning (Broverman and Croft 1987; Birnbaum, Colli ns et al. 1990). The process enactment 
and manufacturing work, in general, has either not evolved to the point of constituting a 
computational model, or has been applied to a very limited range of domains (e.g. just software 
engineering or flexible manufacturing cell control) and exception types (e.g. just inappropriate 
task assignments). The planning work, by contrast, has developed a range of computational 
models but their abilit y to redesign a multi -agent work process in response to an exception is 
contingent upon the planning approach having been used to develop the original work process. 
This requirement is diff icult or impossible to satisfy in an environment where the work process 
emerges dynamically via the interaction of multiple heterogeneous agents. 
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Our Approach: A Shared Exception Handling Service 

Our approach transcends the limitations of current approaches by creating a shared exception 
handling service that can be “plugged”, with littl e or no customization, into existing agent 
systems to add the abilit y to function in exception-prone environments. This service can be 
viewed as a kind of “coordination doctorî; it knows about the different ways multi -agent systems 
can get “sick” , actively looks system-wide for symptoms of such ìill nessesî, and prescribes 
specific interventions instantiated for this particular instance from a body of general treatment 
procedures. Agents need only implement their normative behavior plus a minimal set of 
interfaces that assume only that each agent can report on its own behavior and modify its own 
actions to at least some extent. This vision is realized by building on four key innovations: 

• We define a clear division of labor. Problem solving agents focus on executing their own 
ìnormalî problem solving behavior, while the exception handling agents focus on detecting 
and resolving exceptions in the agent ensemble as a whole. 

• The exception handling service applies a knowledge base of generic exception handling 
detection, diagnosis and resolution expertise which can be applied to a wide range of 
domains. 

• The ìcost of admissionî is only that agents understand a standard language providing at least 
a basic level of self-awareness and self-modifiabilit y, comparable to what is required of 
agents capable of reasonably sophisticated coordination in exception-free contexts. 

• This service can be implemented as a set of standard agents that can be “plugged” in to any 
agent system whose agents support the language interfaces described above. 

We describe our approach in more details in the paragraphs below. 

Generic Exception Handling Expertise: The key element underlying our approach is the simple 
but powerful notion that generic and reusable exception handling expertise can be usefully 
separated from the knowledge used by agents to do their ìnormalî work. There is substantial 
evidence for the validity of this claim. Early work on expert systems development revealed that it 
is useful to separate domain-specific problem solving and generic control knowledge (Barnett 
1984; Gruber 1989). Analogous insights were also confirmed in the domains of collaborative 
design conflict management (Klein 1991) and in preliminary work on process exception 
management (Klein 1997). Generic exception management strategies are easy to find (Klein 
1989). Some examples include: 

• if an agent plan has failed, backtrack to a different plan for achieving the same goal 

• if a highly  serial process is operating too slowly to meet an impending deadline, and the 
subtasks have only serial dependencies, use pipelining (i.e. releasing results for earlier 
subtasks before later subtasks are completed) to increase concurrency 

• if an agent receives garbled data, trace the problem back to the original source of the faulty 
data, eliminate all decisions that were corrupted by this error, and start again 
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• if an agent may be late in producing a time-criti cal output, see whether the consumer agent 
will accept a less accurate output in exchange for a quicker response 

• if multiple agents are causing wasteful overhead by frequently trading the use of a scarce 
shared resource, change the resource sharing policy such that each agent gets to use the 
resource for a longer time 

• if a new high-performance resource applicable to a time-criti cal  task becomes available, 
consider reallocating the task from its current agent to the new agent  

• if an agent in a serial production line fails to perform a task, try to re-allocate the task to an 
appropriately skill ed agent further down the line 

It is our experience that such strategies are easy to acquire from a wide range of research 
literature sources, as well as by generalizing from the vast range of exception handling cases we 
all encounter. We have identified about 300 strategies to date; more details will be given below. 

Heuristic Classification: A useful metaphor for organizing such expertise, we have found, is to 
treat exception handling (EH) as a heuristic classification process (Clancey 1984) analogous to 
that used in medical diagnosis. In this approach, an exception manifestation (i.e. symptom), once 
detected, is mapped to candidate diagnoses in a pre-defined taxonomy of generic underlying 
causes; generic strategies associated with these diagnoses are then instantiated into candidate 
exception resolution plans, one of which is then selected and executed: 

 Specific 
EH Plans

Actions 
Using Action 

Language

Exception 
Manifestations

Exception  
Detection

Exception 
Classes

Instantiate 
Advice

Collect Advice
General Advice

Execute 
EH PLan

Map To 
Exception 
Classes

Pick EH Plan

Selected EH Plan

Queries 
Using Query 

Language

Process 
Status  

The approach thus instantiates generic exception handling expertise into specific situations. The 
EH service communicates with agents using pre-defined languages for learning about the 
exception(s) (the query language) and for describing exception resolution actions (the action 
language). Agents can take any form as long as they are capable of responding appropriately to at 
least a minimum subset of these query and action languages. 
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Exception Detection: The first step in detecting exceptions is, of course, having a model of what 
the ìcorrectî behavior for the multi -agent system is. When an agent is introduced into a multi -
agent system, therefore, it must register at least a rudimentary model of its normative behavior 
with the exception handling service. This model is mapped to a list of the failure modes that are 
known to occur for that kind of normative behavior, and sentinels are generated to detect those 
modes. 

Failure mode identification is done making use of a taxonomy of generic problem solving 
processes wherein each process is annotated with the different ways it can fail . When a new 
agent is registered, we merely identify the generic processes corresponding to that agentís 
behavior, and derive the applicable failure modes from that. For example, it is typical for agents 
to require the output of another agent. The processes for managing such ìflowî dependencies 
need to make sure that the right thing gets to the right place at the right time (Malone and 
Crowston 1994). This immediately implies a set of possible failure modes including an input 
being late (ìwrong timeî), of the wrong type (ìwrong thingî) and so on. Similar analyses can be 
done for other generic processes, e.g. resource sharing, diagnosis, synthesis, market-based 
coordination and so on. We are building for this purpose upon the process taxonomy being 
developed in the context of the MIT Process Handbook. The Handbook is a substantive (3700+ 
entity) and growing repository of coordination mechanisms and other problem solving processes 
(Malone, Crowston et al. 1993; Dellarocas, Lee et al. 1994; Malone and Crowston 1994) which 
has been under development for roughly the past five years in the MIT Center for Coordination 
Science. 

Our work to date in performing failure mode analysis has revealed a wide range of exception 
types (Klein 1997). Exceptions in general involve violations of some either implicit or explicit 
assumption underlying a collaborative work process (e.g. stabilit y of resources, correctness of 
output etc.) and can include change in resources, organizational structure, agent system policies, 
task requirements or task priority. They can also include incorrectly performed tasks, missed due 
dates, resource contentions between two or more distinct processes, unexpected opportunities to 
merge or eliminate tasks, conflicts between actions taken in different process steps and so on. 

Every failure mode can have associated with it a script that searches for the pattern of agent 
behavior corresponding to that failure. These scripts, once instantiated, play the role of ìsentinelsî 
that alert the exception handling service when the condition they were created to detect has 
occurred. A typical sentinel, for example, may check for a task becoming late, violation of 
resource limits, circular wait patterns, and so on. To define these scripts, we build upon pattern 
matching tools developed in previous work (Klein 1997). 

Exception Diagnosis: The diagnosis mechanisms works by traversing a taxonomy of possible 
exception diagnoses based on the presenting symptoms as well as information about the process 
model being enacted. This is a "shallow model" approach (Chandrasekaran and Mittal 1983) 
because it is based on compiled empirical and heuristic expertise rather than first principles. This 
approach is appropriate for domains, such as medical diagnosis, where complete and consistent 
first-principle-based behavioral models do not exist. An important characteristic of heuristic 
classification is that the diagnoses represent hypotheses rather than guaranteed deductions: 
multiple diagnoses may be suggested by the same symptoms, and often the only way to verify a 
diagnosis is to see if the associated prescriptions are effective. 
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The diagnosis hierarchy, in our current model, is structured as a decision tree wherein the system 
starts at the top most abstract diagnosis and attempts to refine it to more specific diagnoses by 
traversing down the tree and selecting the appropriate decision branches by asking questions, 
expressed as query language statements, of the relevant problem solving agents. For example, if 
the system is assessing whether the diagnosis of “circular wait deadlock” applies, it may ask 
agents for which other agents they are waiting for inputs from. This traversal can result in more 
than one candidate diagnosis, since multiple causes may be suggested by the same symptoms. 

Exception Resolution: Once one or more candidate diagnoses for an exception have been 
identified, the next step is to generate, using a knowledge base of generic exception resolution 
strategies, specific plans for resolving the problem. A diagnosis class will often have several 
potential resolution strategies. Since they may not all be applicable for a particular exception, a 
decision tree procedure identical to that used to select diagnoses is used to find the generic 
strategies for a given diagnosis. Strategies are represented as executable script templates whose 
actions are described using the action language. Every template has "slotsî which are fill ed with 
context-specific values, found using query language queries, to produce specific exception 
resolution plans. The resolution strategy “backtrack to untried plan for goal” , for example, would 
include slots for the goal and plan that are fill ed in by asking the affected agent what goal is was 
trying to achieve, and what other plans are available for achieving that same goal. Typically, 
many possible candidate plans can be generated for a given exception. We can backtrack, for 
example, in as many ways as there are alternative plans. In our previous work we have found that 
a relatively small collection of domain-independent heuristics (e.g. ìpick the plan that makes the 
smallest changeî) has been effective in producing a useful ranking of candidate exception 
resolution plans.  

The Query and Action Languages: As we have seen, the query and action languages represent the 
medium by which the exception handling service interacts with the problem solving agents to 
detect, diagnose and resolve exceptions. The query language is used to get agent state 
information, and the action language is used to modify it. 

The query language we use builds upon that developed in earlier systems (Klein 1989; Klein 
1993) extending it to include queries concerning normative agent behavior models. The query 
language is relatively large, and we will make the effort to consolidate it into a smaller set of 
criti cal query types. The action language, in contrast, consists we have found of a relatively small 
set of operators (Klein 1989). These include changing the process model (re-ordering, deleting or 
adding new tasks; changing the resources allocated to a task; canceling tasks) and changing the 
work package contents. 

Our experience to date has shown that agents do not have to understand all of the query or action 
language primitives in order to benefit from the exception handling service, but the more 
primitives they can understand, the more effective the exception handling service is li kely to be. 
This is because the more generic exception diagnoses and resolution strategies tend to require 
only the simplest and easiest to implement queries and actions, but the more sophisticated (and 
presumably more effective) diagnoses and resolutions use the more ìadvancedî primitives. 

The query and action languages can be viewed as representing a ìprice of admissionî to our 
approach. These languages only require, however, that the individual problem solving agents be 
able to describe their own behavior as well as a modify their own actions; the exception handling 
service is responsible for understanding how local knowledge and actions can be coordinated to 
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produce a globally effective exception response. Previous DAI research suggests, moreover, that 
for many cases we want our agents to have roughly that level of self-awareness and self-
modifiabilit y in order to support effective coordination even in the absence of exceptions 
(Findler and Lo 1988). 

System Architecture: The capabiliti es described above can be implemented straightforwardly as 
agents that can simply be plugged-in to an existing agent system with suitable interfaces: 

infrastructure

query
interface

action
interface

problem solving
agent

query
interface

action
interface

new agent
registration

exception
detection agent
(sentinel)

exception
resolution
agent 

find
diagnoses

create/select
resolution

Core
EH
Agents

EH
Agents
Created
As
Needed

normative
behavior
specification

symptoms to
look for

detected
symptoms

diagnostic
queries

selected
resolution
plan

ranked
diagnoses

 

This architecture consists of exception handling agents, problem solving agents as well as the 
agent systems infrastructure, all of which must support at least the base level query and action 
languages. When a new agent is created, the ìnew agent registrationî agent takes a description of 
its normative behavior and creates sentinels (exception detection agents) as necessary to look for 
evidence of dysfunctional behavior. Should a sentinel detect such symptoms, this information is 
sent to a ìdiagnosisî agent which produces a ranked set of candidate diagnoses. These in turn are 
sent to the resolution agent which defines a resolution plan instantiated in the form of a 
ìresolutionî (exception resolution) agent. We can have redundant copies of these agents, thereby 
increasing performance  and addressing potential failures in the exception handling agents 
themselves. 

Human in the Loop: While the architecture above has been presented as a fully automated one, in 
at least some cases it will make sense to include a human ìexecutive managerî in the loop. Our 
previous work in this area, for example, used human input to modify the ranking of diagnoses 
and resolution plans proposed by the exception handling service, and thereby direct the system in 
the direction the human users considered more appropriate (Klein and Lu 1991). We have found 
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that the exception handling service can help human users better understand and more creatively 
resolve exceptions, even if they did not use the particular resolutions proposed by the system. 

 

Evaluation: Contribution to Improving Agent-Based Systems 

The ideas described in this paper have already been substantially validated through nearly a 
decade of development and evaluation of successful systems for resolving multi -agent exceptions 
in the collaborative design (Klein 1989; Klein 1991; Klein 1993) and collaborative requirements 
capture (Klein 1997) domains. This led to the development of the basic heuristic classification 
approach, software tools for exception diagnosis and resolution, a substantive standardized 
language for communication between agents and the exception handling service, a highly 
expressive rationale capture language (Klein 1993), as well as a substantive and growing 
knowledge base of exception resolution heuristics. More recent work has begun applying these 
ideas to a broader range of exception types (Klein 1995; Klein 1996; Klein 1997). The current 
contents of the exception handling knowledge base can be characterized as follows: 

 
Aspect Number Examples 

conflict detection strategies ~10 • check for violated resource budget 
• check for inconsistent parameter constraints 

query operators in 
standardized agent 
communication language 

~100 • what is the rationale for the decision? 
• is the parameter constraint relaxable? 

action operators in 
standardized agent 
communication language 

~10 • relax constraint 
• try different plan for goal 

exception diagnoses ~100 • agent constraints too ambitious 
• excessive serialization in work process 

exception resolution strategies ~300 • relax constraints, maximizing summed utiliti es 
• pipeline tasks with serial dependencies 

exception plan selection 
heuristics 

~10 • pick most specific resolution plan 
• abandon low level goals before high level goals 

 

Our results to date suggest that the exception handling service approach enables two classes of 
important benefits: 

• easier agent development: This approach makes it much easier to develop, understand, 
maintain and reuse problem solving agents, since developers can focus on their normative 
behavior without having to build in responses to all possible exceptions. This greatly reduces 
the cost of achieving the transparent agent interoperabilit y that underlies the appeal of agent 
systems. Another advantage is that this approach does not rely on the existence of powerful 
exception-handling support faciliti es in every agentís implementation language. 

• easier to specify effective exception handling behavior: We are less likely to miss important 
failure modes, and will probably use better exception resolution practices, by taking 
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advantage of a systematically accumulated knowledge base of exception handling ìbest  
practicesî. It will also be much easier, we believe, to specify and modify systemic exception-
handling expertise if it is treated as a functional unit rather than captured as a series of 
carefully designed interlocking behaviors spread over myriads of diverse agents. 

These benefits translate  into more reliable, predictable and eff icient agent-based system 
operation. 

 

Future Work 

We plan to follow two inter-related tracks in our future work: (1) further development of the 
exception handling knowledge base and underlying diagnostic technology, and (2) further 
evaluation of this technology in both simulated and “ real-world” testbed contexts. 

Technical issues we currently consider important include extending the diagnostic approach to be 
able to handle multiple simultaneous exceptions in a coordinated way  (Wu 1990), as well as 
reducing as much as possible the size of the query/action languages that agents need to 
understand in order to interact effectively with the exception handling service. We also plan to 
explore ìmodel-basedî diagnostic approaches (Genesereth 1982; Kleer, Macworth et al. 1990) 
which have been applied with good results to explaining faults in that subclass of systems where 
complete behavioral models exist 

Our evaluation plan consists of a graded series of experiments, occurring first in a simulated 
agents testbed (where we have the maximum flexibilit y in designing the test scenarios), and then 
transitioning to an externally developed testbed (to assess and demonstrate the abilit y to extend a 
pre-extending agent system with our exception handling technology). The simulated testbed will 
evaluate agent system behavior using such heuristics as problem solving time, effectiveness of 
resource utili zation, the understandabilit y of the agent ensemble behavior to human observers, 
abilit y of problem solving agents to work in multiple ensemble contexts w/o modification, and 
the abilit y to control the tradeoff between exception handling and problem solving effort. We 
currently plan to do our first tests in the manufacturing logistics domain. The second testbed will 
enable a “technology integration experiment” wherein we explore integration of our exception 
handling technology into a agent system not originally designed for that purpose. This will allow 
us to assess and demonstrate the abilit y of our technology to be “plugged in” to other testbeds, 
help us identify the knowledge base and query/action language enhancements needed, if any, and 
provide insights into how integration can best be done. We can therefore view this as a ìfinal 
rehearsalî for adoption of our technology by agent system developers outside of our project team. 
We are currently considering, for this purpose, the MIT AI Lab’s “ Intelli gent Room”, a large 
real-time agent-based information gathering/presentation system (Kautz, Selman et al. 1994; 
Coen 1997; Coen 1997). 
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