Exception Handling in Agent Systems'

Mark Klein
MIT Center for Coordination Science
Email: m klein@mit.edu

Chrysanthos Dellarocas
MIT Soan School of Management
Email:dell @mit.edu

Abstract

A criticd chalenge to creding effedive agent-based systems is allowing them to operate
effedively when the operating environment is complex, dynamic, and error-prone. In this paper
we will review the limitations of current “agent-locd” approaches to exception handingin agent
systems, and popase an adternative approad based ona shared exception handling servicethat is
“plugged”, with little or no customizaion, into existing agent systems. This srvice ca be
viewed as akind d “coordination dactorT; it knows abou the diff erent ways multi-agent systems
can get “sick”, adively looks s/stem-wide for symptoms of such ill nessesi, and prescribes
spedfic interventions instantiated for this particular context from a body d genera treament
procedures. Agents need only implement their normative behavior plus a minima set of
interfaces. We daim that this approach doffers smplified agent development as well as more
effedive and easier to modify exception handing behavior.

The Challenge: Exception-Capable Agent Systems

A criticd chalenge to creding effedive agent-based systems is allowing them to operate
effedively when, as is typicd for many damains ranging from manufaduring to office work to
military information gathering, the operating environment is complex, dyramic, and error-prone
(Suchman 1983 Auramaki and Leppanen 1989 Karbe and Ramsberger 199Q Strong 1992 Mi
and Scacdi 1993. In such damains, we car exped to uili ze ahighly diverse set of agents; some
have fairly sophisticated coordination capabiliti es, bu many will be simple encgpsulations of
legacy applicaions. New tasks, agents and aher resources can be expeded to appea and
disappea in unpedictable ways. Communicaion channels can fail or be compromised, agents
can idiei (break down) or make mistakes, inadequate resporses to the gpeaance of new tasks or
resources can lead to missed oppatunities or inappropriate resource dl ocations, uranticipated
agent inter-dependencies can lea to systemic problems like multi-agent conflicts, icircular waiti
deallocks, and so on. All of these departures from “ided” coll aborative behavior can be cdled
exceptions. The result of inadequate exception handing is the potential for systemic problems

' This paper appeas in the Proceeadings of the Third Intrernational Conference on Autonamous
Agents, Sedtle, WA, May 1-5, 1999.The authors gratefully adknowledge the suppat of the
DARPA CoABS Rogram (contrad F3060298-2-0099 whil e preparing this paper.



such as clogged networks, wasted resources, poa performance system shutdowns, and seaurity
vulnerabiliti es.

In this paper we will review the limitations of current “agent-locd” approaches to exception
handling in agent systems, and propcse an dternative “shared service” goproach that offers
simplified agent development as well as more dfedive and easier to modify exception hending
behavior. Initial versions of this rvice have been developed and tested in the multi-agent
collaborative design conflict management domain; we will describe our preliminary results as
well as our future plans.

Contributions and Limitations of Current Work

Current approadies to agent exception handing have serious limitations in terms of agent
development cost and the dfediveness of system-wide exception handling kehavior. The
standard approach has been to icompile ini complicated and carefully coordinated exception
handing behaviors into al problem-solving agents. This is, however, fundamentaly
problematic, since the caises, manifestations and resolutions for agent system exceptions are
inherently systemic and context-sensitive rather than locdizable to any particular agent. A
circular wait deallock, for example (where several agents are dl stalled waiting for inputs from
eat aher) can ony be deteded as a pattern of agent interadions, and can only be resolved by
changing that pattern (e.g. by repladng ore gent with another that has different inpu
requirements). Agent developers must thus anticipate dl the contexts in which the agent may be
used, bu this is extremely difficult. No systematic methoddogy is avail able, howvever, to help
developers identify al relevant exception types and resolution strategies. Making changes in
exception handing kehavior is difficult because it potentially requires coordinated changes in
multiple agents. Agents become much harder to maintain, undrstand and reuse becaise the
relatively simple normative behavior of an agent becomes obscured by a potentially large body
of code devoted to handling exceptional condtions. Finaly, it is unredistic to exped that all
agents will have sophisticated exception handing cgpabiliti es built in. In many cases we will
have to be &le to operate with agents whaose design incorporates only the most basic
cgpabiliti es.

A few efforts have dore some preliminary exploration d the use of distinct exception hending
services. This work has occurred predominantly in the context of business process enadment
(Kreifelts and Woetzd 1987 Auramaki and Leppanen 1989 Karbe and Ramsberger 199Q Strong
1992 Mi and Scacti 1993, manufaduring control (Parthasarathy 1989 Katz 1993 Vissr 1995
and danning (Broverman and Croft 1987 Birnbaum, Collins et al. 199Q. The processenadment
and manufaduring work, in general, has ether not evolved to the point of constituting a
computational model, or has been applied to a very limited range of domains (e.g. just software
engineging a flexible manufaduring cdl control) and exception types (e.g. just inappropriate
task assgnments). The planning work, by contrast, has developed a range of computational
models but their ability to redesign a multi-agent work processin resporse to an exception is
contingent uponthe planning approach having keen used to develop the original work process
This requirement is difficult or impassble to satisfy in an environment where the work process
emerges dynamicaly viathe interadion d multi ple heterogeneous agents.



Our Approach: A Shared Exception Handling Service

Our approach transcends the limitations of current approaches by credaing a shared exception
handiing service that can be “plugged”, with little or no customizaion, into existing agent
systems to add the aility to function in exception-prone environments. This srvice ca be
viewed as akind d “coordination dactorT; it knows abou the diff erent ways multi-agent systems
can get “sick”, adively looks system-wide for symptoms of such ill nessesi, and prescribes
speafic interventions instantiated for this particular instance from a body d general treament
procedures. Agents need only implement their normative behavior plus a minima set of
interfaces that assume only that ead agent can report on its own behavior and modify its own
adionsto at least some extent. Thisvisionisredized by bulding onfour key innowations:

* We define a ¢ea division d labor. Problem solving agents focus on exeauting their own
inormali problem solving kehavior, while the exception handing agents focus on deteding
and resolving exceptions in the agent ensemble & awhale.

* The eception handing service gplies a knowledge base of generic exception handing
detedion, dagnaosis and resolution expertise which can be gplied to a wide range of
domains.

* Theicost of admisgoni is only that agents understand a standard language providing at least
a basic level of self-awareness and self-modifiability, comparable to what is required of
agents capable of reasonably sophisticaed coordination in exception-free ontexts.

* This rvice ca be implemented as a set of standard agents that can be “plugged” in to any
agent system whaose ggents suppat the language interfaces described above.

We describe our approach in more detail s in the paragraphs below.

Generic Exception Handling Expertise: The key element underlying ou approad is the simple
but powerful nation that generic and reusable exception handiing expertise can be usefully
separated from the knowledge used by agents to do their inormali work. There is substantial
evidencefor the validity of this clam. Early work on expert systems development reveded that it
is useful to separate domain-speafic problem solving and generic control knowledge (Barnett
1984 Gruber 1989. Analogous insights were dso confirmed in the domains of collaborative
design conflict management (Klein 199) and in preliminary work on pocess exception
management (Klein 1997. Generic exception management strategies are eay to find (Klein
1989. Some examplesinclude:

» if anagent plan hasfailed, badtradk to adifferent plan for achieving the same god

» ifahighly serial processis operatingtoo slowly to med an impending cealline, and the
subtasks have only serial dependencies, use pipelining (i.e. releasing results for ealier
subtasks before later subtasks are completed) to increase wncurrency

» if an agent receves garbled data, tracethe problem badk to the original sourceof the faulty
data, eliminate dl dedsionsthat were corrupted bythis error, and start again



» if anagent may belatein producing atime-criticd output, seewhether the consumer agent
will accept alessacairate output in exchange for a quicker resporse

» if multiple agents are causing wasteful overhead by frequently trading the use of ascarce
shared resource, change the resource sharing pdicy such that ead agent gets to use the
resourcefor alonger time

» if anew high-performanceresource gplicableto atime-criticd task becomes avail able,
consider redl ocaing the task from its current agent to the new agent

» if anagent inaseria productionlinefalsto perform atask, try to re-all ocate the task to an
appropriately skill ed agent further down the line

It is our experience that such strategies are eay to aauire from a wide range of reseach
literature sources, as well as by generalizing from the vast range of exception handliing cases we
al encourter. We have identified abou 300 strategies to date; more detail swill be given below.

Heuristic Clasdficaion: A useful metapha for organizing such expertise, we have found,is to
trea exception handing (EH) as a heuristic dasgficaion pocess (Clancey 1984 anaogous to
that used in medica diagnasis. In this approad, an exception manifestation (i.e. symptom), orce
deteded, is mapped to candidate diagnases in a pre-defined taxonamy of generic underlying
causes; generic strategies associated with these diagnoses are then instantiated into candidate
exception resolution dans, ore of which is then seleded and exeauted:

4 Exception o advice R
Classes ———— ™ General Advice
A Instantlale
N AdV|ce
Map To
g«:eptlon Specific
asses EH Plans
Pick EH Plan
Selected EH Plan
Execute
K EH PLan
il
Exception '
Mamfesl?tatlons Queries ACt'OnS
Using Query  Using Action
Exception Language Language
Detection
Process
Status

The approacd thus instantiates generic exception handing expertise into spedfic situations. The
EH service ommunicaes with agents using pre-defined langueges for leaning abou the
exception(s) (the query languege) and for describing exception resolution actions (the adion
language). Agents can take any form aslongasthey are caable of respondng appropriately to at
least aminimum subset of these query and adion langueges.



Exception Detedion: The first step in deteding exceptions is, of course, having a model of what
the icorredi behavior for the multi-agent system is. When an agent is introduced into a multi-
agent system, therefore, it must register at least a rudimentary model of its normative behavior
with the exception handing service This model is mapped to alist of the fail ure modes that are
known to occur for that kind d normative behavior, and sentinels are generated to deted those
modes.

Failure mode identificaion is dore making wse of a taxonamy of generic problem solving
processes wherein ead processis annaated with the different ways it can fail. When a new
agent is registered, we merely identify the generic processes correspondng to that agentis
behavior, and cerive the gplicable fail ure modes from that. For example, it istypicd for agents
to require the output of another agent. The processes for managing such iflowi dependencies
need to make sure that the right thing cets to the right place & the right time (Malone and
Crowston 1994. This immediately implies a set of posgble failure modes including an inpu
being late (iwrong timei), of the wrongtype (iwrong thingi) and so on. Similar analyses can be
dore for other generic processes, e.g. resource sharing, dagnaosis, synthesis, market-based
coordination and so on. We ae building for this purpase upon the process taxonamy being
developed in the mntext of the MIT Process Handbook.The Handbookis a substantive (3700+
entity) and gowing repository of coordination medianisms and aher problem solving processes
(Maone, Crowston et a. 1993 Dellarocas, Lee ¢ a. 1994 Malone and Crowston 1994 which
has been under development for rougHy the past five yeas in the MIT Center for Coordination
Science

Our work to date in performing failure mode analysis has reveded a wide range of exception
types (Klein 1997. Exceptions in general invave violations of some dther implicit or explicit
asumption unarlying a ollaborative work process (e.g. stability of resources, correaness of
output etc.) and can include dhange in resources, organizational structure, agent system palicies,
task requirements or task priority. They can also include incorredly performed tasks, missed duwe
dates, resource ontentions between two or more distinct processes, unexpeded oppatunities to
merge or eliminate tasks, confli cts between adions taken in dff erent process $eps and so on.

Every fallure mode can have associated with it a script that searches for the pattern of agent
behavior correspondngto that failure. These scripts, onceinstantiated, day the role of isentinglsi
that alert the exception handing service when the cndtion they were aeded to deted has
occaurred. A typicd sentinel, for example, may ched for a task becoming late, violation o
resource limits, circular wait patterns, and so on. To define these scripts, we build upon p@ttern
matching tools developed in previous work (Klein 1997.

Exception Diagnasis: The diagnasis medhanisms works by traversing a taxonamy of possble
exception dagnoses based onthe presenting symptoms as well as information abou the process
model being enaded. This is a "shallow model" approach (Chandrasekaran and Mittal 1983
becaise it is based oncompiled empiricd and heuristic expertise rather than first principles. This
approad is appropriate for domains, such as medicd diagnasis, where mmplete and consistent
first-principle-based behaviora models do nd exist. An important charaderistic of heuristic
clasgficdion is that the diagnoses represent hypotheses rather than guaranteed deductions:
multi ple diagnoses may be suggested by the same symptoms, and dften the only way to verify a
diagnosisisto seeif the asciated prescriptions are dfedive.



The diagnasis hierarchy, in ou current model, is gructured as a dedsion treewherein the system
starts at the top most abstrad diagnosis and attempts to refine it to more spedfic diagnoses by
traversing down the tree ad seleding the gpropriate dedsion kranches by asking qestions,
expressd as query language statements, of the relevant problem solving agents. For example, if
the system is assessng whether the diagnasis of “circular wait deadlock” applies, it may ask
agents for which ather agents they are waiting for inputs from. This traversal can result in more
than ore candidate diagnasis, since multiple caises may be suggested by the same symptoms.

Exception Resolution: Once one or more candidate diagnases for an exception have been
identified, the next step is to generate, using a knowledge base of generic exception resolution
strategies, spedfic plans for resolving the problem. A diagnaosis class will often have severa
patential resolution strategies. Since they may nat al be gplicable for a particular exception, a
dedsion tree procedure identicd to that used to seled diagnaoses is used to find the generic
strategies for a given dagnasis. Strategies are represented as exeautable script templates whose
adions are described using the adion language. Every template has "dlotsi which are fill ed with
context-spedfic values, found wing query language queries, to produce spedfic exception
resolution dans. The resolution strategy “badtrad to urtried plan for goal”, for example, would
include slots for the goal and dan that arefilled in by asking the df eded agent what goal iswas
trying to adchieve, and what other plans are available for adchieving that same goal. Typicdly,
many pcssble candidate plans can be generated for a given exception. We can bactrad, for
example, in as many ways as there ae dternative plans. In ou previous work we have foundthat
arelatively small colledion d domain-independent heuristics (e.g. ipick the plan that makes the
smallest changel) has been effedive in produwcing a useful ranking d candidate exception
resolution dans.

The Query and Action Languages: As we have seen, the query and adion languages represent the
medium by which the exception handing service interads with the problem solving agents to
deted, diagnose and resolve exceptions. The query language is used to get agent state
information, and the adion language is used to modify it.

The query language we use builds uponthat developed in ealier systems (Klein 1989 Klein
1993 extending it to include queries concerning namative ajent behavior models. The query
languege is relatively large, and we will make the dfort to consolidate it into a smaller set of
critica query types. The adionlanguage, in contrast, consists we have found d arelatively small
set of operators (Klein 1989. These include cdhanging the processmodel (re-ordering, celeting a
adding rew tasks,; changing the resources all ocated to a task; cancding tasks) and changing the
work padkage mntents.

Our experienceto date has hown that agents do nd have to understand all of the query or adion
language primitives in order to benefit from the exception handing service, bu the more
primitives they can understand, the more dfedive the exception handing serviceis likely to be.
This is because the more generic exception dagnoses and resolution strategies tend to require
only the simplest and easiest to implement queries and adions, bu the more sophisticated (and
presumably more df edive) diagnases and resol utions use the more iadvancedi primitives.

The query and adion languages can be viewed as representing a iprice of admissoni to ou
approadh. These languages only require, however, that the individual problem solving agents be
able to describe their own behavior as well as a modify their own adions; the exception hending
serviceis resporsible for understanding hav locd knowledge and adions can be @mordinated to



produce aglobally effedive exception resporse. Previous DAI research suggests, moreover, that
for many cases we want our agents to have roughy that level of self-awareness and self-
modifiability in order to suppat effedive wordination even in the asence of exceptions
(Finder andLo 1988.

System Architecture: The caabiliti es described above can be implemented straightforwardly as
agents that can simply be plugged-in to an existing agent system with suitable interfaces:

EH registretion | di egnoses resolution
Agents N

sd ected

. resol ution
peraior || | Symptomsto P i
Ao ook for agnostic
specification Queies
EH exception exoeption
Agents Jetection agent resol ution
Created (sentine) ent
As
Needed N\
Query action
interface interface I \
problem solving
‘ agent
query action
inteface interface
infrastructure

This architedure consists of exception handing agents, problem solving agents as well as the
agent systems infrastructure, all of which must suppat at least the base level query and adion
langueges. When a new agent is creded, the inew agent registrationi agent takes a description o
its normative behavior and credes sntinels (exception detedion agents) as necessary to look for
evidence of dysfunctional behavior. Shoud a sentinel deted such symptoms, this information is
sent to aidiagnasisi agent which produces a ranked set of candidate diagnases. These in turn are
sent to the resolution agent which defines a resolution dan instantiated in the form of a
iresolutioni (exception resolution) agent. We can have reduncant copies of these ayents, thereby
increasing performance and addressng pdentia falures in the exception handling agents
themselves.

Human in the Loop While the achitedure &ove has been presented as afully automated ore, in
at least some cases it will make sense to include ahuman iexeautive manageri in the loop. Our
previous work in this area for example, used human inpu to modify the ranking o diagnoses
and resolution dans propased by the exception handling service and thereby dred the system in
the diredion the human users considered more gpropriate (Klein and Lu 199). We have found




that the exception handing service can help human users better understand and more aedively
resolve exceptions, even if they did na use the particular resolutions propcsed by the system.

Evaluation: Contribution to Improving Agent-Based Systems

The ideas described in this paper have dready been substantialy validated through realy a
decale of development and evaluation d successul systems for resolving multi-agent exceptions
in the mllaborative design (Klein 1989 Klein 1991 Klein 1993 and coll aborative requirements
capture (Klein 1997 domains. This led to the development of the basic heuristic dasgficaion
approad, software tods for exception dagnaosis and resolution, a substantive standardized
languege for communicaion ketween agents and the exception handing service, a highly
expressve rationale cature language (Klein 1993, as well as a substantive and gowing
knowledge base of exception resolution heuristics. More recent work has begun applying these
ideas to a broader range of exception types (Klein 1995 Klein 1996 Klein 1997. The aurrent
contents of the exception handing knavledge base can be dharaderized as foll ows:

Aspect Number Examples
conflict detedion strategies ~10 » chedk for violated resource budget
» ched for inconsistent parameter constraints
query operatorsin ~100 * what istherationale for the deasion?
standardized agent * isthe parameter constraint relaxable?
communicaion language
adion operatorsin ~10 e relax constraint
standardized agent » try different plan for goal
communicaion language
exception dagnoses ~100 * agent constraints too ambiti ous
» excessve seridizaioninwork process
exception resolution strategies | ~300 * relax constraints, maximizing summed uiliti es
» pipeline tasks with serial dependencies
exception dan seledion ~10 » pick most spedfic resolution dan
heuristics » abandonlow level goals before highlevel goals

Our results to date suggest that the exception handing service gproach enables two classes of
important benefits:

» eaier agent development: This approadh makes it much easier to develop, undarstand,
maintain and reuse problem solving agents, since developers can focus on their normative
behavior withou having to build in resporsesto all possble exceptions. This grealy reduces
the aost of adhieving the transparent agent interoperability that underlies the gped of agent
systems. Ancther advantage is that this approach dces not rely onthe existence of powerful
exception-handing suppat fadliti esin every agentis implementation language.

» eaer to spedfy effedive exception handing kehavior: We ae lesslikely to missimportant
fallure modes, and will probably use better exception resolution pradices, by taking




advantage of a systematicdly acawmulated knownledge base of exception handing ibest
pradicesi. It will aso be much easier, we believe, to spedfy and modify systemic exception-
handiing expertise if it is treaed as a functional unit rather than captured as a series of
caefully designed interlocking behaviors oread over myriads of diverse agents.

These benefits translate into more reliable, predictable and efficient agent-based system
operation.

FutureWork

We plan to follow two inter-related tradks in ou future work: (1) further development of the
exception hending knowvledge base and unarlying dagnostic techndogy, and (2) further
evauation d thistechndogyin bah simulated and “red-world” testbed contexts.

Tednicd isuues we aurrently consider important include extending the diagnastic goproacd to be
able to handle multiple smultaneous exceptions in a wordinated way (Wu 1990, as well as
reducing as much as possble the size of the query/adion languages that agents need to
understand in order to interad effedively with the exception handliing service We dso plan to
explore imodel-basedi diagnacstic goproadches (Genesereth 1982 Kleea, Maaowvorth et al. 1990
which have been applied with goodresults to explaining faults in that subclassof systems where
complete behavioral models exist

Our evaluation dan consists of a graded series of experiments, occurring first in a simulated
agents testbed (where we have the maximum flexibility in designing the test scenarios), and then
transitioning to an externally developed testbed (to assessand demonstrate the aility to extend a
pre-extending agent system with ou exception handing techndogy). The simulated testbed will
evaluate gyent system behavior using such heuristics as problem solving time, eff ediveness of
resource utili zation, the understandability of the agent ensemble behavior to human olservers,
ability of problem solving agents to work in multiple ensemble cntexts w/o modification, and
the aility to control the tradeoff between exception handing and problem solving effort. We
currently plan to do ou first tests in the manufaduring logistics domain. The seaond testbed will
enable a ‘techndogy integration experiment” wherein we explore integration d our exception
handling techndogy into a agent system not originaly designed for that purpase. This will allow
us to asessand demonstrate the adility of our techndogy to be “plugged in” to ather testbeds,
help us identify the knowledge base and query/adion language enhancements needed, if any, and
provide insights into how integration can best be done. We can therefore view this as a ifina
reheasali for adoption o our techndogy byagent system devel opers outside of our projed team.
We ae aurrently considering, for this purpose, the MIT Al Lab’'s “Intelligent Room”, a large
red-time aent-based information gathering/presentation system (Kautz, Selman et al. 1994
Coen 1997 Coen 1997.



References

Auramaki, E. and M. Leppanen (1989. Exceptions and dfice information systems. Office
Information Systems. The Design Process Procealings of the IFIP WG 8.4 Working
Conference, Linz, Austria.

Barnett, J. A. (1984. “How Much Is Control Knowledge Worth? A Primitive Example.”
Artificial Intelli gence22(1): 77-89.

Birnbaum, L., G. Callins, et a. (1990. Model-Based Diagnasis of Planning Failures. AAAL.

Broverman, C. A. and W. B. Croft (1987). “Reasoning Abou Exceptions During Plan Exeaution
Monitoring.” Aaa-871: 190-195.

Chandrasekaran, B. and S. Mittal (1983. “Dee Versus Compiled Knowledge Approadies To
Diagnaostic Problem Solving.” Int. J. Man-Madhine Studies: 425-436.

Clancey, W. J. (1984. “Classficdion Problem Solving.” Aaa: 49-55.

Coen, M. (1997. Building Brains for Rooms: Designing Distributed Software Agents.
Procealings of IAAI-97.

Coen, M. (1997. Towards Interadive Environments. The Intelli gent Room. Proceadings of HCI-
97.

Dellarocas, C., J. Leg et d. (1994. Using a Process Handbook to Design Organizaional
Processes. Proceedings of the AAAI 1994 Sporing Symposium on Computational Organization
Design, Stanford, California.

Finder, N. V. and R. Lo (1988. An Examination d Distributed Planning in the World o Air
Traffic Control. Realings in Distributed Artificial Intelligence A. H. Bond and L. Gassr.
Cdlifornia, Morgan Kaufmann: 617--627.

Genesereth, M. R. (1982. Diagnaosis Using Hierarchicd Design Models.

Gruber, T. R. (1989. “A Method For Acquiring Strategic Knowledge.” Knowledge Acquisition
1(3): 255-277.

Karbe, B. H. and N. G. Ramsberger (1990. Influence of Exception Handling onthe Suppat of
Cooperative Office Work. Multi-User Interfaces and Applicdions. S. Gibbs and A. A. Verrijin-
Stuart, Elsevier Science Publishers: 355-370.

Katz, D. M., S. (1993. _Exception management on a shop floor using orine simulation.
Procealings of 1993Winter Simulation Conference - (WSC '93), Los Angeles, CA, USA, |IEEE
New York, NY, USA.

Kautz, H., B. Seman, et a. (1994. An Experiment in the Design d Software Agents.
Procealings of the Twelfth National Conference on Artificial Intelligence (AAA1-94), Sedtle,
WA.

Klea, J. d.,A. K. Maoworth, et a. (1990. Charaderizing Diagnases.

10



Klein, M. (1989. Corflict Resolution in Cooperative Design. Computer Science. Urbana
Champaign, IL., University of Illinais.

Klein, M. (199]). “Suppating Conflict Resolution in Cooperative Design Systems.” |EEE
Systems Man and Cybernetics 21(6).

Klein, M. (1993. “Capturing Design Rationale in Concurrent Engineaing Teans.” |EEE
Computer 26(1): 39-47.

Klein, M. (1993. “Suppating Conflict Management in Cooperative Design Teans.” Journal on
GroupDedsion and Negatiation 2: 259-278.

Klein, M. (1995. “Corflict Management as Part of an Integrated Exception Handing
Approadh.” Al in Engineaing Design Analysis and Manufaduring (Al EDAM) 9: 259-267.

Klein, M. (1996. “Core Services for Coordination in Concurrent Engineeing.” Computers in
Industry.

Klein, M. (1997. “An Exception Handling Approach to Enhancing Consistency, Completeness
and Corrednessin Coll aborative Requirements Capture.” Concurrent Engineering Research and

Applications(March).

Klein, M. (1997. Exception Handling in Process Enadment Systems. Cambridge MA, MIT
Center for Coordination Science

Klein, M. and S. C.-Y. Lu (199)). Insights Into Cooperative Group Design: Experience Wth the
LAN Designer System. Sixth International Conference on Applicaions of Artificial Intelli gence
in Engineaing (AIENG '91), Uk.

Kreifelts, T. and G. Woetzd (1987). Distribution and Exception Handling in an Office Procedure
System. Office Systems Methods and Todls, IFIP WF 8.4 Working Conference on Methods and
Todsfor Office Systems.

Malone, T. W., K. Crowston, et al. (1993. Tods for inventing aganizaions: Toward a
handbook & organizational processs. 2nd IEEE Workshop on Enabling Tedindogies
Infrastructure for Coll aborative Enterprises (WET ICE), Morgantown, WV, USA.

Malone, T. W. and K. G. Crowston (1994). “The interdisciplinary study d Coordination.” ACM
Computing Surveys 26(1): 87-119.

Mi, P. and W. Scacdi (1993. Articulation: An Integrated Approach to the Diagnasis,
Replanning and Rescheduling o Software Process Failures. 8th International Conference on
Knowledge-Based Software Engineeing.

Parthasarathy, S. (1989. Generalised process exceptions-a knowledge representation paradigm
for expert control. Procealings of the Fourth International Conference on the Applications of
Artificial Intelligence in Engineaing, Cambridge, UK, Comput. Med. Publications;
Southampton, UK.

Strong, D. M. (1992. “Dedsion suppat for exception handing and quality control in dfice
operations.” Dedsion Suppat Systems 8(3).

Suchman, L. A. (1983. “Office Procedures as Pradicd Action: Models of Work and System
Design.” ACM Transadions on Officelnformation Systems 1(4): 320-328.

11



Vissr, A. (19995. “An exception-handling framework.” International Journal of Computer
Integrated Manufaduring 8(3): 197-203.

Wu, T. D. (1990. Efficient Diagnosis of Multiple Disorders Based on a Symptom Clustering
Approach.

12



